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ABSTRACT 

Shut-in and cooldown of multiphase pipeline will cause accumulation of 

condensed liquid at all the low points of undulating sections of the pipeline.  Successful 

startup of pipeline from this equilibrium condition, requires sufficient pressure at 

upstream to overcome hydrostatic pressure of accumulated liquid and high frictional 

pressure losses during movement of startup slug in the pipeline.  During end of life 

operation, Shut-in Well Head Pressure, may not be adequate for pipeline startup due 

to depletion of reservoir inventory or the required inlet pressure during startup may 

exceed the pipeline design pressure.   The objective of this project is to study the 

formation of startup slugs in undulating pipeline and its impact on operating 

parameters through OLGA simulation.  It is also to establish optimum control methods 

and design for handling startup slugs with low inlet pressure. Using OLGA, startup 

slug mitigations options such as flaring from Slug Catcher or utilising drag reducing 

agent (DRA) injection in the feed or gas injection at riser base or requirement of 

combination of these methods were analysed.  By comparing the simulation results, 

appropriate mitigation method is proposed for optimal benefit.  The thermal-physical 

property table for the fluid, which is the input for OLGA simulator is generated with 

PVTSim software.  Depressurising the pipeline by flaring (Method 1) from slug 

catcher is helpful to control startup slug due to increase in available differential 

pressure across pipeline, reduced liquid hold-up in pipeline by vaporization at low 

pressure and increased superficial gas velocity.  Gas injection (Method 2) at riser base 

can also be helpful, as it can reduce startup pressure requirement by reducing the riser 

liquid head.  DRA injection (Method 3) can reduce the pressure requirement at 

upstream of pipeline by minimizing frictional pressure losses when startup slugs 

moves through long pipeline.  From simulation analysis, it is concluded that all three 

methods helped to reduce the inlet pressure requirement within allowable limit.  

Therefore, combination methods options are not necessary.  Through techno economic 

analysis, startup with flaring (Method 1) is concluded as most optimal method for 

control of startup slug.   



 

vi 
 

ABSTRAK 

Penutupan dan penyejukan pelbagai fasa paip akan menyebabkan pengumpulan 

cecair terkondensasi pada lokasi rendah pada bahagian paip yang beralun. Start-up saluran 

paip yang berjaya daripada kondisi equilibrium memerlukan tekanan yang mencukupi 

untuk mengatasi tekanan hidrostatik pada cecair terkondensasi dan kehilangan tekanan 

geseran yang tinggi semasa pergerakan start-up slug dalam paip. Semasa operasi Akhir 

hayat, Shut-in Well Head Pressure (SIWHP) mungkin tidak mencukupi untuk start-up 

disebabkan oleh kekurangan reservoir inventori atau tekanan semasa start-up boleh 

mengatasi design pressure saluran paip berkenaan. Objektif projek ini untuk mengkaji 

pembentukkan start-up slug dalam saluran paip beralun yang bersaiz 24 inci besar dan 150 

km panjang untuk Rich Associated Gas feed dan impaknya terhadap parameter operasi 

melalui simulasi OLGA. Ia juga untuk mewujudkan keadah kawalan dan reka bentuk yang 

optimum untuk mengendalikan start-up slug dengan inlet pressure yang rendah daripada 

available shut-in well head pressure atau design pressure paip, mana-mana yang lebh 

rendah. Menggunakan OLGA, kaedah mitigasi start-up slug seperti flaring dari Slug 

Catcher atau mengunakan drag reducing agent (DRA) injection di feed atau gas injection 

di pangal riser atau keperluan untuk mengunakan gabungan kaedah kaedah akan 

dianalisis. Dengan membandingkan keputusan simulasi, mitigasi yang sesuai akan 

dicadangkan untuk faedah yang optimum. Thermal-physical property table untuk cecair, 

yang merupakan input untuk simulator OLGA akan dihasilkan dengan perisian PVTSim. 

Depressurising saluran paip dengan flaring (Kaedah 1) dari Slug Catcher membantu untuk 

mengawal startup slug kerana peningkatan available differential pressure merentasi 

saluran paip, penyusutan liquid hold-up dalam saluran paip dengan penguapan pada 

tekanan rendah dan peningkatan superficial gas velocity. Gas injection (Kaedah 2) pada 

pangkalan riser juga boleh membantu, kerana ia dapat mengurangkan keperluan startup 

pressure   dengan mengurangkan riser liquid head. DRA injection (Kaedah 3) boleh 

mengurangkan keprluan tekanan di hulu saluran paip dengan memminimumkan 

kehilangan tekanan geseran apabila startup slugs bergerak melalui saluran paip yang 

panjang. Dari analisis simulasi, ia disimpulkan bahawa ketiga-tiga kaedah ini membantu 

mengurangkan keperluan inlet pressure dalam had yang dibenarkan. Oleh itu, pilihan 

kaedah gabungan tidak diperlukan. Melalui analisis techno economic, startup dengan 

flaring (Kaedah 1) disimpulkan sebagai kaedah yang paling optimum untuk mengawal 

startup slug. 
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CHAPTER 1  
 

 

INTRODUCTION 

1.1 General Overview 

Satellite platforms are generally used to produce from marginal oil and gas 

fields as well as from the fields located in harsh environment.  Due to economic 

reasons, the multiphase produced fluid consisting of hydrocarbon gas, hydrocarbon 

liquid and formation water are transported directly from well head platform to on-

shore processing facilities or offshore centralised processing platform through long 

distance multiphase pipelines. This results in large cost savings by not having to 

duplicate separation, dehydration, compression and utilities for new facilities.  It also 

reduces the risk to people as less people are working at offshore facilities.  It also 

reduces risk to environment by having less hydrocarbon inventory at top sides and  

having fewer routes for release of hydrocarbon to environment.  Flow assurance 

studies for multiphase pipelines involves analysing thermal, hydraulic and production 

chemistry related issues in order to ensure safe, reliable and economical transportation 

of fluids from production facility to processing facility.  The use of multiphase 

pipelines presents major challenges in design and operation of the facility.   

Figure 1.1 shows various flow related and fluid related flow assurance 

challenges associated with multiphase pipeline.   The list of issues shown at the top 

left are flow related issues and bottom right are fluid related issues.   
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Figure 1.1 Flow Assurance Challenges with Multiphase Pipeline (Hill, 2018) 

This project focus on slugging issues in the pipeline.  Slug flow is a liquid gas 

two phase flow in which the gas phase exists as large bubbles separated by liquid slugs.  

Figure 1.2 shows the slug flow pattern in the case of horizontal pipeline.   

 

Figure 1.2 Slug Flow in Horizontal Pipeline (Omowunmi et al., 2013) 
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Slugs are normally classified based on mode of formation.  The slug flow 

formed by flow instabilities such as Kelvin-Helmholts instability (Sharma, Ihara and 

Manabe, 2002) are called as hydrodynamic slugs.  If the slug formation is due to 

geometry of the pipeline, they are called terrain slugs.  Slug formation in riser pipe and 

in hilly terrain are examples for terrain slug.   Formation and movement of riser slug 

is shown schematically in Figure 1.3 along with velocity and pressure trend at riser 

bottom.   Similar to riser pipe slug, liquid accumulation at low points in the pipeline 

will cause temporary blockage.  This can cause gas pressure behind the blockage to 

increase and expel the liquid as slug.   

The next type of slugs are operational slugs, which are formed due to transient 

changes in pressure and flowrate during various operating modes of the multiphase 

pipeline.  Some of the types of operational slugs are start-up slug, ramp-up slug, 

pigging slug and depressurisation operation slug. 

 

Figure 1.3 Terrain Slugging in Flowline Riser (BP Multiphase Design Manual, 
1994) 
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These liquid slugs moves at much higher velocity than the average liquid 

velocity.  This type of flow can cause severe vibrations in pipeline systems due to 

impact of high velocity slugs against fittings such as bend, tee etc.  This can also cause 

other flow assurance issues such as increased back pressure, fatigue failure, erosion 

and unsteady gas and liquid flow into downstream processing equipment of separator.  

The unsteady gas and liquid flow through pipeline can cause tripping of downstream 

compression system, which in turn can cause overpressure in the separator.  Therefore, 

managing slug flow is one of the critical aspect of flow assurance in multiphase 

pipeline.  The slug flow behaviour is greatly influenced by thermal, hydraulic and 

production chemistry related factors and is transient in nature. Following are the 

examples of those factors affecting the slug flow behaviour in multiphase pipeline: 

(a) Thermal factors: Viscosity, density and heat transfer capacity 

(b) Hydraulic factors: Pipe diameter, length, elevation and roughness 

(c) Chemistry related factors: Hydrocarbon composition, water cut and GOR 

 Therefore, analysing and controlling slug flow is complex in nature and 

usually carried out using dynamic simulation software tools such as OLGA and Leda 

Flow along with fluid characterising software such as Multiflash, Promax and PVTSim 

software.   

The slug analysis and control should also consider changes to operation 

parameters such as feed composition, pressure, temperature, production profiles, 

ambient conditions throughout the operating life of the reservoir.  This will avoid any 

requirement for major modification to the facility during operation phase, which is 

usually expensive when compared to designing the facility compatible for entire 

operating life of the reservoir.  The design of multiphase pipeline system should also 

consider various operating modes such as startup, normal operation, production turn-

down, production ramp up, production ramp down and shutdown.  This will improve 

safety, reliability, operation flexibility, controllability and will optimise production 

and cost.   
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This study is to understand operational slug issue in long multiphase pipeline 

on undulating terrain during pipeline start-up and to contribute in addressing the issue.  

For slug analysis, this project has considered full well stream (FWS) of Rich 

Associated Gas fluid transported through subsea pipeline of length 150 kilometres and 

16 inches diameter. 

1.2 Problem Statement 

Liquid holdup in a pipeline during end of life operation is larger than early life 

operation due to low gas velocity in the pipeline.  From steady state operating 

condition, pipelines are shut down for maintenance reason or for emergency situations.  

During shutdown of FWS pipelines, the valves at upstream of inlet riser and 

downstream of outlet riser are isolated under pressurised condition.  This will cause 

the pipeline pressure to get equivalised and reaches settle out pressure.  During this 

time, liquid in the pipeline gets accumulated in the lowest points of pipeline depending 

on the elevation profile of the pipeline.  Produced fluid trapped in the pipeline is further 

cooled by exchanging heat with surrounding water for subsea pipeline section and with 

atmospheric air for above sea pipeline and piping sections.  This cooldown process 

causes additional trapped gas to condense and get accumulated at low points due to 

gravity.  If the pipeline is laid over undulating terrain, the condensed liquid gets 

accumulated at all the low points of the undulating sections of the pipeline.  During 

start-up, pipeline inlet and outlet shutdown valves are opened.  Fluid pressure at the 

inlet of the pipeline will increase to overcome the hydrostatic pressure of accumulated 

liquid following shutdown and frictional pressure loss due to movement of fluid 

through the pipeline.  Majority of the liquid holdup is evacuated from the pipeline as 

large liquid slugs into the downstream separator.  This is called operational slug of 

pipeline start-up.   

During early phase of life of reservoir, produced fluid will have enough energy 

to overcome the hydrostatic pressure and frictional pressure loss.  During end of life 

operation, the Shut-in Well Head Pressure (SIWHP) available at upstream of choke 

valve will be much lesser than early life operation due to depletion of reservoir 

inventory.  In addition to that, liquid phase of production fluid will be enriched with 
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heavier hydrocarbon and will normally have high water cut.  This will cause increased 

liquid fraction in the pipeline, which will cause high hydrostatic liquid head following 

shutdown.  Low gas velocity in the pipeline will also cause increased liquid holdup in 

the pipeline.  Due to these operating characteristics, the available SIWHP during end 

of life operation may not be sufficient to overcome hydrostatic fluid head and frictional 

pressure loss during pipeline start-up.  Therefore, flow cannot be established through 

pipeline during start-up.  In some cases, the required pressure at inlet of pipeline to 

mobilize the start-up may exceed the allowable design pressure limit of the pipeline.   

Lack of knowledge on operational slugs can severely affect production flow 

through the pipeline.  The existing slug control design and methodologies practiced in 

industries might be inadequate for startup towards end of life operation of reservoir on 

undulating pipeline.  This is due to large liquid accumulation at many low points, low 

available pressure at pipeline inlet or the inlet pressure exceeding the design pressure 

limit of the pipeline.  This study will focus on handling startup slug in long multiphase 

pipeline on an undulating terrain during start-up with required inlet pressure below the 

design limit of the pipeline and SIWHP during end of life operation.    

OLGA is the dynamic simulation tool, which can provide better insight of 

thermal and hydraulic transient behaviours of multiphase pipeline (Enilari, 2015).  In 

this study, OLGA is used to predict the liquid hold-up following pipeline shutdown 

and is also used to analyse various methodologies to handle operational slugs during 

start-up, when production could not be restored due to low available SIWHP or due to 

high required inlet pressure, which exceeds the design limit.  The following mitigation 

techniques are analysed through simulation studies to overcome the above issue: 

(a) Depressurizing the pipeline by flaring 

(b) Gas injection at outlet riser base 

(c) Drag Reducing Agent injection with feed 

(d) Combination of the above methods, if above methods alone is unsuccessful 
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1.3 Study Objectives 

The major objectives of this project are: 

(a) To study the formation of startup slugs in undulating pipeline and its impact 

on operating parameters through OLGA simulation; 

(b) To establish optimum control method and design for handling startup slugs 

with pipeline upstream pressure below the design pressure limit or available 

shut in wellhead pressure (SIWHP) during end of life operation. 

 

1.4 Scope of Study 

The overall scope of study involves analysing the following: 

(a) Modelling the carbon steel pipeline system of length 150 km and diameter 24 

inches.  Large undulation are assumed at 10 sections of the pipeline and small 

undulations at 3 sections of the pipeline.  These undulations are evenly spread 

across the entire length of the pipeline.  The elevation changes at large 

undulated sections vary between 6 m and 13 m.  The inlet and outlet risers 

elevation change are 112 m and 50 m respectively.     

(b) Establishing optimal design and/or operational mitigation method for handling 

startup slugs by the following 3 methods: 

i. Method 1: Flaring from slug catcher  

ii. Method 2: Gas injection at riser base  

iii. Method 3: DRA injection in the feed 

Note: Combination of above methods are to be analysed only if startup by 

above methods alone is unsuccessful.     
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(c) Comparing the results from all the above methods and propose the appropriate 

method for optimal benefit.    

 

1.5 Significance of Study 

This study is useful to understand the background of flow assurance issues due 

to startup slugs in the undulating multiphase pipeline; 

This study aimed to provide optimum design option to handle startup slugs 

during end of life operation of reservoir, when available SIWHP is not enough to drive 

the accumulated liquid in the pipeline and production flow cannot be established 

through multiphase pipeline during start-up.   

This study is also useful to establish optimum operating philosophy for 

handling startup slugs, so that transient operating conditions are within safe operating 

envelope for the entire system.  This will also enable reliable and efficient operation 

of the unit by minimising production interruptions caused by process trips during 

pipeline startup operation.    
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