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ABSTRACT 

Solid oxide fuel cell (SOFC) has been regarded as one of the most amazing 

technologies in energy production that could directly convert hydrocarbon fuel into 

electricity without reforming procedure. This study was conducted to analyse the 

micro-tubular solid oxide fuel cell (MT-SOFC) with different electrolyte thicknesses 

in terms of its performance by utilising methane (CH4) as the fuel. MT-SOFCs 

investigated in this work consisted of thin cathode layer, coated onto co-extruded 

anode/electrolyte dual-layer hollow fibre (DLHF). A DLHFs with different electrolyte 

thicknesses had been developed in this study by adjusting the extrusion rate upon a 

single-step phase inversion-based co-extrusion and co-sintering process. Uniform 

outer electrolyte layer from 18 to 34 µm were achieved when the extrusion rate of 

outer layer was increased from 1 to 5 ml min-1. The fabricated DLHFs were then co-

sintered at various temperatures (1350, 1400 and 1450 °C) prior to reduction process 

at 550 °C for 3 h. In evaluating the performance of DLHFs fuelled by CH4 gas, current-

voltage (I-V) measurement, impedance spectra, as well as stability test were performed 

at various temperatures ranging from 750 to 850 °C. Although the bending strength 

and gas-tightness properties were reduced with the decrease in electrolyte layer 

thickness, significant improvement in power output of the cell was achieved. Power 

density as high as 0.32 W cm-2 was obtained on the cell with the electrolyte layer of 

18 µm in thickness, which is 20 % higher than the cell with an electrolyte layer of 34 

µm, which was only 0.12 W cm-2 when operated at 850 °C. Stability test has shown 

that the cell with thinnest electrolyte (18 µm) can only survived for 8 h while the 

thickest cell (34 µm) can operate up to 15 h at 750 °C. The results show that there was 

a significant reduction in cell performance when CH4 was used as the fuel, due to the 

carbon deposition as proven by Raman spectroscopy and carbon, hydrogen, nitrogen 

and sulphur (CHNS) analyzer as qualitative and quantitative analyses, respectively. 

The study also shows that the optimum electrolyte thickness has to be around 23 to 

24.5 µm in order to produce a high quality DLHF to withstand carbon deposition. 
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ABSTRAK 

Sel bahan api pepejal oksida (SOFC) telah dianggap sebagai salah satu 

teknologi yang menakjubkan dalam pengeluaran tenaga yang boleh menukar 

hidrokarbon menjadi elektrik secara langsung tanpa prosedur pembentukan semula. 

Kajian ini dijalankan untuk menganalisis sel bahan api pepejal oksida-mikro-tiub 

(MT-SOFC) dengan ketebalan elektrolit yang berbeza daripada segi prestasi dengan 

menggunakan metana (CH4) sebagai bahan api. MT-SOFC yang disiasat dalam kajian 

ini terdiri daripada lapisan nipis katod, disalut ke atas anod / elektrolit dwi-lapisan serat 

berongga (DLHF). DLHF dengan ketebalan elektrolit berbeza telah dibangunkan 

dalam kajian ini dengan mengubahsuai kadar penyemperitan terhadap songsangan fasa 

langkah tunggal berasaskan proses sepenyemperitan dan sepensinteran. Lapisan 

elektrolit luaran seragam dari 18 hingga 34 μm telah dicapai apabila kadar 

penyemperitan lapisan luaran meningkat dari 1 hingga 5 ml min-1. DLHF yang 

dihasilkan kemudian melalui sepensinteran bersama pada pelbagai suhu (1400 °C, 

1425 °C dan 1450 °C) sebelum proses penurunan pada 550 °C selama 3 jam. Dalam 

menilai prestasi DLHF yang didorong oleh gas CH4, pengukuran voltan semasa (I-V), 

spektra impedans, serta ujian kestabilan dilakukan pada pelbagai suhu antara 750 °C 

hingga 850 °C. Walaupun kekuatan lenturan dan sifat kekedapan gas dikurangkan 

dengan penurunan ketebalan lapisan elektrolit, peningkatan ketara dalam keluaran 

kuasa sel telah dicapai. Ketumpatan kuasa setinggi 0.32 W cm-2 diperolehi pada sel 

dengan lapisan elektrolit dengan ketebalan 18 μm, iaitu 20 % lebih tinggi daripada sel 

dengan lapisan elektrolit 34 μm, yang hanya 0.12 W cm-2 apabila dikendalikan pada 

850 °C. Ujian kestabilan menunjukkan bahawa sel dengan elektrolit nipis (18 μm) 

hanya dapat bertahan selama 8 jam manakala sel tebal (34 μm) boleh beroperasi 

sehingga 15 jam pada 750 °C. Terdapat pengurangan yang signifikan dalam prestasi 

sel ketika CH4 digunakan sebagai bahan api, disebabkan oleh pemendapan karbon 

yang dibuktikan oleh spektroskopi Raman dan analisa karbon, hidrogen, nitrogen dan 

sulfur (CHNS) masing-masing sebagai analisis kualitatif dan kuantitatif. Kajian ini 

juga menunjukkan bahawa ketebalan elektrolit optimum adalah sekitar 23 μm hingga 

24.5 μm untuk menghasilkan DLHF yang berkualiti untuk menahan pemendapan 

karbon. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Research Background 

The world population has experienced continuous growth since the last 50 

years, which directly resulted in a large increase in primary energy consumption (Chen 

et al. 2019). The utilisation of energy is growing as of more prominent demands in 

almost every human activity including: stationary applications such as power 

production plants, transportation, household uses, agriculture, industry and 

manufacturing, service, buildings, and more (Brouwer 2010). Fossil fuel is currently 

the primary source for this energy. The products are distributed globally and thus 

greatly available, easily accessible and the overall production costs are low. A rough 

estimation is that the worldwide energy consumption will rise more than 50 % until 

2030 and fossil fuel will cover over 80 % of the energy demand (Milano et al. 2016). 

Nevertheless, the total resources of non-renewable fossil fuel are not endless 

and the costs of its uses are a high emission of harmful products such as carbon dioxide 

(CO2) and sulphur (S) (Bridges et al. 2015). Hence, the world is currently facing two 

detrimental challenges, which is energy crisis and environmental pollution. To 

confront this issue, most of the scholars around the globe are focusing to create the 

innovation for environmental-friendly energy converter. Fuel cell innovation 

demonstrates promising characteristics and qualities to solve these problems as it 

consumes fuels at high efficiency with less impact on environment and yield more 

electricity from a similar amount of fuel particularly when compared to interior 

combustion engines (Brouwer 2010). 

Fuel cell is an electrochemical device which converts chemical energy 

resulting from chemical reaction into electrical energy and heat. It produces electricity 

through a chemical reaction, without combustion. This energy conversion system is 
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used for primary and backup power for commercial, industrial and residential 

buildings and in remote or inaccessible areas. They are also used for transportation 

purposes such as fuel cell vehicles, including forklifts, automobiles, buses, boats, 

motorcycles and submarines (Ellamla et al. 2015). Besides that, this device is a 

potential and promising system to be in the power generation field due to its direct 

conversion from wide variety of fuels to electricity. 

Fuel cells operates much like a battery, except they do not require electrical 

recharging. A battery stores all of its chemicals inside and coverts the chemicals into 

electricity. Once those chemicals run out, the battery dies. A fuel cell, on the other 

hand, receives the chemicals it uses from the outside; therefore, it will not run out. Fuel 

cells can generate power almost indefinitely, as long as they have fuel to use. In 

addition to that, fuel cell is also mechanically ideal as it does not involve any moving 

parts during the operation, thus making them quiet and reliable sources of power 

(Hardman, Chandan, and Steinberger-Wilckens 2015). Therefore, fuel cell should be 

marketed and would replacing the conventional energy in future as it provides so much 

potentials. 

Figure 1.1 illustrates the general operating principle of fuel cell. Every fuel cell 

is comprised of an electrolyte layer and two electrodes layer, one positive and one 

negative, called respectively, the anode and the cathode. In electrodes, the operation 

of fuel cells involves a combined oxidation-reduction reaction (Sariboĝa and 

Öksüzömer 2012). Oxidant is reduced in cathode while fuel is oxidised in anode. A 

presence of catalyst will accelerate the reactions take place in the electrodes 

(Goodenough and Huang 2007). While electrolyte will carry electrically charged 

particles from one electrode to the other via external load, by which the energy is 

produced. 
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Figure 1.1  Operating principle of fuel cell (Sariboĝa and Öksüzömer 2012) 

The amount of power produced by a fuel cell depends upon several factors, 

such as fuel cell type, cell size, the temperature at which it operates, and the pressure 

at which the gases are supplied to the cell. Fuel cells are classified primarily by the 

kind of electrolyte they employ. This determines the kind of chemical reactions that 

take place in the cell, the kind of catalysts required, the temperature range in which the 

cell operates, the fuel required, and other factors (Ellamla et al. 2015). Most 

importantly, these properties ultimately decide the applications for which these fuel 

cells are most suitable. 

There are several types of fuel cells currently under development, each with its 

own advantages, limitations, and potential applications such as solid oxide fuel cell 

(SOFC), proton exchange membrane fuel cell (PEMFC), alkaline fuel cell (AFC), 

direct methanol fuel cell (DMFC), phosphoric fuel cell (PAFC) and molten carbonate 

fuel cell (MCFC) (Wang et al. 2017). SOFC, MCFC and AFC are classified as anion-

conducting electrolyte because they transfer anion from cathode to anode. Whereas, 

PAFC, DMFC and PEMFC are considered as proton-conducting electrolyte because 

they are cation charge carriers. Table 1.1 summaries the properties of different types 

of fuel cell in term of their operating temperature, electrolyte materials and 

applications.
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Table 1.1  Different between fuel cells (Bernay, Marchand, and Cassir 2002) 

Fuel cell Type of electrolyte Electrolyte material Charge carrier Operating temperature °C Applications 

AFC 
Liquid: circulating or in 

matrix 

Potash KOH generally in 

aqueous solution at 35% in 

weight 

OH- 60-100 Vehicle, spatial 

DMFC 
Solid: polymer which has 

been moistened 
Proton exchange membrane H+ 60-120 Vehicle, portable 

MCFC 
Liquid: in porous matrix 

of lithium aluminate 

Old generation Li2CO3/K2CO3 

Old generation Li2CO3/Na2CO3 
CO3

2- 600-700 Stationary 

PAFC 
Liquid: in a porous matrix 

of silicon carbide 
Pure phosphoric acid H+ 160-200 Stationary 

PEMFC 
Solid: polymer which has 

been moistened 
Proton exchange membrane H+ 60-90 

Vehicle, stationary, 

portable 

SOFC Solid oxide (ceramic) 
Yttrium stabilized zirconia 

Cerium-gadolinium oxide 
O2- 

800-1000 

500-700 
Vehicle, stationary 
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Nevertheless, this study is focuses on SOFC based on solid oxide electrolyte. 

SOFC is one of the most exciting technologies in the power generation field because 

of its great flexibility of fuel especially with regards to fuels derived from biomass, 

instead of hydrogen (H2) (Lo Faro et al. 2012). SOFC operates at wide operating 

temperatures, from 500 °C to 1000 °C. Operation at such temperature allows an 

internal reforming reaction and high enough to initiate fuel conversion reactions. 

Besides that, no fuel pre-treatment is applied since the reforming reactions (conversion 

of H2 from hydrocarbon) could directly promote within anode cell due to the high 

operative temperature (Assabumrungrat, Pavarajarn, and Charojrochkul 2004). 

There are two structural designs of the SOFC that have been commercialized; 

planar and tubular SOFCs. The tubular design has been introduced by extrusion 

method in order to prevent the thermal shock problem facing by conventional planar 

design. Since the power density is inversely proportional to the tubular cell diameter, 

there was an effort developed by scholars by introducing a smaller cell diameter known 

as micro-tubular SOFCs (MT-SOFCs) to boost the performance. In fact, the 

development of this advanced cell design, i.e. MT-SOFC promotes an excellent 

thermal stability during rapid heat cycling, quick start-up capability, high power output 

density, low capital cost and portable characteristics compared to the conventional 

planar and tubular SOFCs (Jamil et al. 2015). 

First generation of MT-SOFC developed was designed in an electrolyte-

supported SOFC system with yttria stabilized zirconia (YSZ) electrolyte tubes up to 5 

mm in diameter. Thick electrolyte layer was first developed to serve as “cell 

backbone”, that is responsible to provide mechanical strength to the entire cell for 

deposition of the remaining cell layers (Wei et al. 2008). Other promising designs are 

electrode-supported SOFC which use thick anode or cathode as the supporting layer. 

Table 1.2 shows the difference of three supported systems. Anode-supported MT-

SOFC is more favourable because it allows the application of thin electrolyte layer, 

which results to the reduction in ohmic lose and consequently, enhance cell’s power 

density (Zhou et al. 2012). 
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Current method of fabricating multi-layer hollow fibre for high temperature 

SOFC system using YSZ as the ceramic material is very challenging. It involves many 

steps of extrusion, layer of depositions and sintering processes. Each step needs to 

undergo sintering process and these repetition steps lead to high manufacturing cost. 

Fortunately, the cost can be reduced by using an economical fabrication technique, i.e. 

single-step phase inversion-based co-extrusion and co-sintering technique (Jamil et al. 

2017). The single-step fabrication offers a time-consume and flexible method because 

it fabricates a dual-layer hollow fibre (DLHF) simultaneously with smaller diameter 

and better adhesion. In addition, the phase-inversion technique offers major influence 

on creating porous structure which leads to the formation of asymmetric structure on 

the prepared fibre. 

Nevertheless, limited knowledge and study on the fabrication of DLHF via 

phase inversion based-co-extrusion and co-sintering technique is realized. The most 

challenging issue that need to be tackled is during co-sintering. The DLHF needs to be 

co-sintered at high temperature to fully densify the electrolyte but at the same time, 

has reduced the porosity of anode. A dense electrolyte layer is compulsory since it will 

act as a barrier between electrodes, preventing direct flow of fuel and oxidant. While, 

the anode should be porous in order to provide many active sites reactions to the 

structures (Othman, Droushiotis, Wu, Kelsall, and K. Li 2011). 
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MT-SOFC 

Configuration 
Electrolyte-supported SOFC 

Electrode-Supported SOFC 

Anode-supported SOFC Cathode-supported SOFC 

Advantages 

 High mechanical robustness 

due to dense structures and 

good stability for RedOx 

cycles. 

 Low operating temperature (about 

750 °C) and ohmic resistance due 

thin electrolyte layer. 

 High the electrical output due to 

low ohmic resistance. 

 Low materials cost since nickel 

(Ni) or nickel oxide (NiO) is 

relatively cheap. 

 Easy to fabricate. 

 Good stability under RedOx 

condition and low carbon 

deposition due thin anode. 

Disadvantages 

 High ohmic losses resulting 

from thick electrolyte layer. 

 Low mechanical reliability due to 

porous structures and low RedOx 

stability. 

 Lack of study and research based 

on cathode-supported. 

 Induce chemical reaction between 

cathode and electrolyte at high 

sintering temperature. 

 High polarisation resistance. 

 Table 1.2 Difference of MT-SOFC supported systems (Droushiotis et al. 2014) 
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1.2 Problem Statement 

On the off chance that the hydrocarbons can be utilised directly as a fuel, the 

whole expenses would be significantly decreased. Moreover, hydrocarbon such as 

methane (CH4) produce energy in a more efficient manner, given the presence of extra 

electrons in one molecule. H2 can only produce two electrons, whereas the CH4 is 

comprised of eight electrons in each molecule. Utilisation of hydrocarbon for SOFC 

frameworks is a splendid thought. However, hydrocarbon-based fuel can also cause 

carbon deposition; as a matter of fact, the presence of nickel (Ni) catalyst in anode 

promotes this reaction when utilising CH4 (Omar et al. 2018) but Ni is still be used 

since it offers the best conductivity and catalytic performance (Stoeckl et al. 2017). 

Carbon deposition is not only lead to the catalyst poisoning, but can cause the 

cell damage/crack as well (fracture of the thin film electrolyte layer) which is initiated 

by decomposition of the hydrocarbons on the Ni catalyst surface (Ivers-Tiffée et al. 

2010). Thus, this study is focusing on how to reduce the cell damage/crack. There are 

several strategies have been introduced in order to tackle this problem, but most of 

them are focusing on the modification of anode layer compared to the electrolyte layer 

(Subotić, Schluckner, Schroettner, et al. 2016). The electrolyte layer also plays 

important role in fabrication of DLHF which provide the durability needed for CH4-

based MT-SOFC. The strategy on modifying the electrolyte layer is also an efficient 

way to further improve the performance of MT-SOFC by reducing thickness of the 

electrolyte layer, the ohmic losses in the electrolyte layer can be minimised. 

In additional, electrolyte thickness modification is also important as the 

optimum thickness can avoid/prevent crack on the cell after carbon deposition take 

place. This can be done by adjusting the co-extrusion parameters such as the extrusion 

rate of the electrolyte layer suspension (Othman, Droushiotis, et al. 2010). MT-SOFC 

is operated at high temperatures (600 to 1000 °C) by having a constant supply of fuel 

and oxidant at the anode and cathode side, respectively. Obviously, the two gases 

should not be intermixed to i) obtain high open circuit voltage and ii) avoid violent 

burn out (Sındıraç et al. 2019). This can be achieved by having a dense gas tight 

ceramic electrolyte. In order to be gas leak-free cell, the DLHFs must be sintered at 
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high co-sintering temperatures ranges from 1350 to 1450 °C (Yang, Tan, and Ma 

2008). 

1.3 Objectives of Study 

The main aim of this study is to fabricate YSZ-based DLHFs with desired 

structure for CH4-fuelled MT-SOFC. The specific objectives are as follow: 

(a) To examine the effect of different electrolyte thicknesses of DLHF in term of 

morphology and physical property for CH4-fuelled MT-SOFC. 

(b) To investigate the effect of co-sintering temperature toward the properties of 

DLHFs with different electrolyte thicknesses. 

(c) To study the performance of DLHFs as a complete MT-SOFC with different 

electrolyte thicknesses in term of I-V measurement, impedance spectra and 

stability test by using CH4 as fuel. 

1.4 Scopes of Study 

In order to achieve the objectives of this study, the following scopes are 

outlined: 

(a) Fabricating DLHF precursors by phase inversion-based co-extrusion method. 

1. Preparing anode and electrolyte spinning suspensions based on the 

composition reported in literature. 

2. Extrude the spinning suspension into DLHF by controlling the extrusion rate 

of the electrolyte outer layer from 1 to 5 ml min-1. 
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3. Co-sintering the DLHF precursors at different temperatures (1350, 1400 and 

1450 °C) 

(b) Characterizing the properties of DLHF with different electrolyte thicknesses 

and co-sintering temperature in term of morphology, mechanical strength, gas-

tightness and gas-permeability properties by performing scanning electron 

microscope (SEM), three-point bending test gas-tightness test and gas 

permeability test. 

(c) Performing MT-SOFC by potentiostat/galvanostate. 

1. Utilising CH4 as fuel and oxygen (O2) as oxidant at various temperatures (750, 

800 and 850 °C). For comparison, H2 has been used as the control sample. 

2. Conducting I-V measurement, impedance spectra and stability test. 

3. Analysing carbon deposition in DLHFs by conducting Raman spectroscopy 

and Carbon, Hydrogen, Nitrogen and Sulphur (CHNS) analysis. 

1.5 Significance of Study 

This study is expected to provide a better understanding on the fundamental 

principle for the fabrication of anode/electrolyte DLHF for CH4-fuelled MT-SOFC, 

which consists of the modifications of electrolyte thickness by considering the 

morphological, mechanical strength and gas-tightness properties. It is acknowledged 

that there are various methods have been introduced in order to prevent carbon 

deposition on the MT-SOFC when using CH4 by modifying the anode side, but little 

attention has been given on the electrolyte side. Therefore, attempts are made to 

investigate the potential of electrolyte thickness modification to be used to fabricate a 

complete MT-SOFC powered by CH4 fuel.  

To the best of author’s knowledge, no study has been conducted so far to be 

power the MT-SOFC with CH4 fuel by controlling the electrolyte thickness. This study 

could be beneficial to the researchers in this area regarding to the knowledge 
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