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ABSTRACT 

In order to efficiently remove heavy metal ions from wastewater using forward 

osmosis (FO), selection of preferable membrane and draw solution (DS) is essential. 

Thus, the purpose of this study is to investigate the synergistic effect of thin-film 

composite membranes (TFCs) with complex MgCl2 draw solution for the removal of 

copper (II) from its aqueous solution using FO. A total of five TFCs with different 

concentration ratio of polyethyleneimine (PEI) over piperazine (PIP) annotated as 1.0-

PIP, 0.3-PEI, 0.5-PEI, 0.7-PEI and 1.0-PEI were fabricated and the physicochemical 

properties of these membranes were characterized using Fourier transform infrared 

spectroscopy, scanning electron microscopy, atomic force microscopy, zeta potential 

and contact angle analysis. Preliminary performance study was done using 

nanofiltration system on their water fluxes and Cu (II) rejection. The used TFCs were 

then autopsied under energy dispersive X-ray (EDX) to examine copper attachments 

on it. Meanwhile, MgCl2 undergoes complexation with complexing agent poly(sodium 

4-styrenesulfonate) (PSS). The affinity of MgCl2 with PSS with fixed loading was first 

studied at different pH (3.0, 5.0, 7.0 and 9.0) using dead-end filtration system. Study 

of PSS loadings (0.0, 0.1, 0.5, 1.0, 2.5 and 5.0 w/w%) was done later using FO system 

at 1.0 M MgCl2 DS and reverse solute flux (RSF) was determined. From all of the 

aforementioned experiments, removal of Cu (II) using FO was carried out at different 

feed concentrations (1000, 2000 and 5000 ppm) and the performances in term of water 

flux and rejection were discussed. Physicochemical analysis confirmed the formation 

of polyamide layer for all TFC membranes. Zeta potential revealed that the positivity 

of the TFCs’ surface charge increased in an order of 1.0-PIP < 0.3-PEI < 0.5-PEI < 

0.7-PEI < 1.0-PEI. Consequently, 1.0-PEI exhibited higher flux compared to 1.0-PIP 

owing to its higher hydrophilicity. Interestingly, excellent selectivity of 1.0-PEI 

resulted in Cu (II) ion rejection of more than 95% and 99% in NF and FO operation 

respectively outperforming the other produced TFCs. EDX result further explained 

that the copper rejection was also facilitated by the electrostatic interaction with the 

surface charge of the TFCs. Based on the performance evaluation, 1.0-PIP was 

selected for complexation study since it portrayed good capability of Cu (II) retention 

and better FO water flux. Complexation of MgCl2 with PSS was able to lower the 

effect of RSF up to 60% reduction while maintaining satisfactory water fluxes 

compared to the control MgCl2 DS. Final Cu (II) rejection by FO using 1.0-PIP and 

the 1.0 w/w% PSS-MgCl2 complex DS revealed that the water flux slightly decreased 

with average Cu (II) retention of 95% with increasing Cu (II) feed concentration. This 

study promotes FO as a promising option for heavy metals removal application using 

innovative DS with lowered RSF.  



vii 

ABSTRAK 

Untuk menyingkirkan ion logam berat secara berkesan daripada air sisa dengan 

menggunakan osmosis hadapan (FO), pemilihan membran yang lebih baik dan larutan 

penarik (DS) adalah penting. Oleh itu, tujuan kajian ini adalah untuk mengkaji kesan 

sinergistik membran komposit filem nipis (TFCs) dengan larutan penarik MgCl2 

kompleks bagi penyingkiran kuprum (II) daripada larutan akueusnya menggunakan 

FO. Sebanyak lima TFCs dengan nisbah komposisi polietilenaimina (PEI) atas 

piperazina (PIP) yang berbeza iaitu 1.0-PIP, 0.3-PEI, 0.5-PEI, 0.7-PEI dan 1.0-PEI 

disediakan dan sifat fizikokimia membran dicirikan menggunakan spektroskopi 

inframerah jelmaan Fourier, mikroskopi imbasan elektron, mikroskopi daya atomik, 

potensi zeta dan analisis sudut hubungan. Kajian prestasi awal dilakukan 

menggunakan sistem penapisan nano ke atas fluks air dan penyingkiran Cu (II). TFCs 

yang telah digunakan kemudiannya dianalisa dengan penyebaran tenaga sinar-X 

(EDX) untuk memeriksa lekatan kuprum di atasnya. Sementara itu, MgCl2 menjalani 

proses kompleksasi dengan agen kompleksasi poli(natrium 4-stirenasulfonat) (PSS). 

Keserasian MgCl2 dengan PSS pada pemuatan tetap dikaji terlebih dahulu pada pH 

yang berbeza (3.0, 5.0, 7.0 dan 9.0) menggunakan sistem penapisan buntu. Kajian 

muatan PSS berbeza (0.0, 0.1, 0.5, 1.0, 2.5 dan 5.0 w/w%) seterusnya dilakukan 

menggunakan sistem FO pada 1.0 M MgCl2 DS dan fluks zat terlarut berbalik (RSF) 

ditentukan. Berdasarkan daripada semua eksperimen yang telah dinyatakan, 

penyingkiran Cu (II) pada kepekatan permulaan berbeza (1000, 2000, dan 5000 ppm) 

menggunakan FO kemudian dijalankan dan prestasinya dari segi fluks air dan 

penyingkiran logam dibincangkan. Analisis fizikokimia mengesahkan pembentukan 

lapisan poliamida untuk semua membran TFCs. Potensi zeta mendedahkan kenaikan 

cas positif permukaan TFCs ialah dalam urutan 1.0-PIP <0.3-PEI <0.5-PEI <0.7-PEI 

<1.0-PEI. Oleh itu, 1.0-PEI memperlihatkan fluks yang lebih tinggi berbanding 1.0-

PIP disebabkan oleh sifat hidrofilik yang lebih tinggi. Menariknya, 1.0-PEI 

menunjukkan penyingkiran ion Cu (II) masing-masing lebih daripada 95% dan 99% 

dalam operasi NF dan FO, mengatasi TFCs lain. Hasil EDX menjelaskan bahawa 

penyingkiran kuprum juga dibantu sedikit oleh interaksi elektrostatik dengan 

permukaan TFCs yang bercas. Berdasarkan penilaian prestasi, 1.0-PIP dipilih untuk 

kajian kompleks kerana ia menggambarkan keupayaan penyingkiran Cu (II) yang baik 

dan fluks air FO yang lebih baik. Kompleksasi MgCl2 dengan PSS berjaya 

merendahkan kesan RSF sehingga 60% pengurangan sambil mengekalkan fluks air 

yang memuaskan berbanding dengan larutan penarik MgCl2 kawalan. Akhirnya, 

penyingkiran Cu (II) oleh FO menggunakan 1.0-PIP dan 1.0 w/w% PSS-MgCl2 

kompleks DS mendedahkan bahawa fluks air sedikit menurun dengan purata 

penyingkiran Cu (II) pada 95% apabila kepekatan permulaan Cu (II) dinaikkan. Kajian 

ini mempromosikan FO sebagai alternatif yang berguna untuk digunakan dalam 

penyingkiran logam berat menggunakan DS inovatif dengan kesan RSF yang rendah.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Research Background 

It is known to all that water is the most precious natural resource and serves as 

a vital need for every living thing on this planet. It has even been mentioned in the 

Holy Book of Quran more than 1400 years ago that all living things are mostly made 

up of water as per said in an excerpt which means: 

“Allah has created every [living] creature from water. And of them are those 

that move on their bellies, and of them are those that walk on two legs, and of them 

are those that walk on four. Allah creates what He wills. Indeed, Allah is over all things 

competent.” 

The above excerpt from chapter 24 of the Quran, Surah An-Nur (The Light) 

verse 45, solely explains the importance of water to every living thing especially to 

human as water keeps us hydrated so that biological processes inside our body can be 

well-functioned (‘4 Biology of water’, 1993). 

Unfortunately, human activities and industrial management malpractices have 

mistreated the environment (Shannon et al., 2008). One of the common heavy metals 

ion abundantly found in the industrial wastewater stream is copper (Cu) for it has wide 

usage and vast application for instance electroplating, etching, metal finishing, 

pigment and alloy manufacturing (Bradl, 2005a; Al-saydeh et al., 2017). Even though 

the bio-importance of copper in iron metabolism and many other roles in human 

biochemistry has been made known by all, it is only at a trace presence, approximately 

100 mg Cu needed in human body (Bost et al., 2016). In fact, it is an open secret for 

any intake in excess will cause only harm to the system. According to Kurniawan et 

al. (2006), excessive accumulation of Cu in human can lead to liver damage, Wilson 
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disease and insomnia. In addition, the European Union had included copper into what 

was called “The Grey List” back in 1976 which was an old list of hazardous  materials 

that became a main concern for their content in the disposal to be reduced (Crini et al., 

2017). Due to these reasons, the tolerable amount of this metal in drinking water has 

been put down to lower acceptable concentration level, for instance 1.3 ppm by USA 

Environmental Protection Agency and <2.0 ppm by World Health Organisation 

(WHO) (Puri and Kumar, 2012; Al-Saydeh et al., 2017). Moreover, stringent 

government policy in accord with the matter of the effluent discharge from the 

manufacturing of the electronic products also may elevate the concern for a proper 

treatment of its wastewater containing that aforementioned heavy metal. 

A lot of techniques have been specialised into treatment of wastewater 

containing heavy metals. There goes many conventional methods have been used upon 

decontamination of heavy metal, such as chemical precipitation, coagulation and 

flocculation, ion exchange and flotation (Kurniawan et al., 2006). Nevertheless, 

inconsistency and incomplete elimination often becomes the major barrier of these 

techniques. In addition, some of the methods could also generate secondary pollutants. 

Therefore, it is necessary to find other methods that could serve as another alternative 

treatment of water laden with heavy metals. Among of those techniques, membrane 

filtration is presented as an advantageous candidate for removal of heavy metals. 

Membrane technology in various separation applications is growing rapidly as 

if it is enhancing every day. Due to massive research on the membrane technology, a 

lot of new improvement and discoveries have been found. Technically, the membrane 

separation technology evolves from the traditional pressure-driven membrane 

separation system such as microfiltration (MF), nanofiltration (NF), ultrafiltration 

(UF) and reverse osmosis (RO) to the thermally driven membrane distillation (MD) 

and concentration driven processes for example forward osmosis (FO). These 

traditionally pressure-driven membrane separation systems are often known to suffer 

from severe fouling and low rejection capability due the high pressure applied to the 

system. Nevertheless, forward osmosis (FO) has recently emerged as the outstanding 

candidate to cater these sorts of problems. 
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“Forward osmosis (FO),” despite being old of it concept, this application seems 

to successfully acquires great attention for research purposes in the last two decades 

(Dutta and Nath, 2018). Being natural, clean, eco-friendly process, FO is seen 

interestingly potent to substitute or complement various other application in separation 

process including food and beverages processing, pharmaceutical industry, 

desalination, power generation, waste water treatment, irrigation system and heavy 

metal removal (Cath et al., 2006; Zhao et al., 2012; Lutchmiah et al., 2014; Chekli et 

al., 2016). Instead of being a pressure driven which consume electricity, the 

transmembrane transportation of an FO system on the other hand is catalysed by the 

concentration gradient. Difference in concentration of the feed solution and draw 

solution creates the gradient in osmotic pressure that technically becomes the driving 

force for the system to be functional. Some desirable features include high salt 

rejection, require less operating hydraulic pressure and more importantly, less 

susceptible to fouling. Owing to these features, FO is paving possibilities in treating 

hypersaline, high fouling propensity or otherwise challenging feed waters in a more 

efficient way (Altaee and Hilal, 2014; Chekli et al., 2016; Wang et al., 2018). 

Nonetheless, there are some inherent disadvantages of FO, such as lower 

permeate water flux compared to pressure driven membrane processes, internal 

concentration polarisation (ICP) and high energy consumption of draw solution 

recovery. As Zhao et al. claimed, FO is known to suffer from severe internal 

concentration polarization, greatly reducing its water flux. Moreover, the need for a 

powerful draw solution that meets its favourable criteria is overwhelming. This is due 

to the requirement to drive the osmosis process across the membrane efficiently 

without giving the membrane significant drawbacks and at the same time easier for the 

draw solution to be recovered. Moreover the product is not a pure water, hence 

necessitates additional purification using either RO, NF, UF, MD or any other system 

(hybrid system) which then obliges extra energy input (Zhao et al., 2012). Above all 

the shortcomings from the application of FO, Ansari et al., nevertheless saw it no 

differently instead they claimed that FO has the potential for simultaneous treatment 

and resource recovery from municipal wastewater (Ansari et al., 2017). 



 

4 

Up to this day, research of FO extensively focuses on desalination for water 

reclamation  (Wang et al., 2018), but less on other fields. There have been studies 

reported on beverage concentration (Kim et al., 2019), protein yield enhancement 

(Yang et al., 2009), desert restoration (Duan et al., 2014), fertilizer-drawn FO (Chekli 

et al., 2017), limited literatures on heavy metals removal (HMR) (Liu et al., 2017) and 

several others. While the available studies of FO in heavy metal removal are then 

concentrating on either membrane modification or draw solution formulization parts. 

In conjunction, this research will focus on both in the membrane part and the 

improvisation of existing draw solution. 

1.2 Problem Statement 

It has been ascertained that FO possessed a huge potential in various 

application including removal of heavy metals from wastewater. However, in order for 

an FO to be operationally excellent, there are two key components that play the most 

important role. The two components are the membrane itself and the draw solution 

(DS). A favourable membrane for heavy metal removal application should have a high 

rejection of heavy metal and high-water flux. According to previous research, 

fabrication of thin-film composite (TFC) membrane via interfacial polymerization (IP) 

not only will introduce a highly selective layer of polyamide (PA) on top but also 

carries electrical charge along with it. The selective barrier practically will only permit 

water molecules to pass through while limit the passage of most other undesired 

constituents across the membrane. The electrical charge embedded on the membrane 

surface then facilitate with the retention of charged particles. (Almutairi et al., 2012).  

Previously, extensive studies have been done on the fabrication of TFC 

membranes (TFCs) using different amine monomers and different acid chloride (Saha 

and Joshi, 2009; Wu et al., 2015). Besides, there has been a study on fabrication TFCs 

using different substrate (Misdan et al., 2014). But because of the PA layer that carries 

significant role in permselectivity of the membrane, therefore extra attention was given 

onto the study with different reactants’ monomers for PA layer formation. Previously, 

Wu et al. had a study on TFC based nanofiltration (TFC-NF) membranes fabrication 
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using different concentration ratio of polyethyleneimine (PEI) and piperazine (PIP) 

monomers to be hydrolysed with trimesoyl chloride (TMC) to form PA layer. The 

findings showed promising results of NF water fluxes for mixed amine TFCs and 

excellent rejection of MgCl2 which was 95% averagely while varied percent rejection 

of other salts (MgSO4, Na2(SO4) and NaCl) depending on the ratio concentration of 

the PIP/PEI content of the TFC membranes produced (Wu et al., 2015). However, the 

study is limited to NF process and common salts rejection experiment even though the 

TFCs produced seems to be potential for heavy metals removal application. Therefore, 

in order to fill in the research gap, we study the effect of different PEI/PIP loadings 

ratio toward the performance of the produced TFCs for copper (II) removal from its 

aqueous solution under FO operation. 

In which draw solution (DS) holds another key to an effective FO, Zhao et al. 

did outline some characteristics for a good draw solution should have. Among those 

mentioned are of a good osmotic pressure generator, exhibits low reverse solute 

diffusion, demote internal concentration polarization, low cost and toxicity and finally 

easy to be recovered economically (Zhao et al., 2012). However, it is impossible to 

obtain a perfect draw solution that is one-size-fits-all criteria of a good draw solution 

since every draw solution must have their own advantages and shortcomings. Taking 

aqueous magnesium chloride (MgCl2) as the draw solution, it has been known to have 

the ability to generate preferably high osmotic pressure, low cost and non-toxic. 

However, looking at the bad side of this inorganic salt, MgCl2 is bounded by high 

reverse solute flux (RSF) that takes into account the loss of the draw solute 

representing a gradual reduction in osmotic pressure. Typically, RSF of 1.0 M MgCl2 

can vary from as low as 0.004 mol/m2hr to 0.66 mol/m2hr (Saren et al., 2011). 

Thus, improving this type of draw solution by reducing the RSF to a negligible 

amount by adopting the concept of polymer enhanced ultrafiltration (PEUF) seems to 

be an innovative option since there is no similar study available up to this point. By 

definition, the said PEUF carry a method called complexation of the targeted metal ion 

with macro ligand, a water-soluble polymer which acts as the complexing agent simply 

by the addition of complexing agent into the solution containing the metal ion – in this 

context MgCl2 DS. For this study, complexing agent poly (sodium 4-styrenesulfonate) 
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(PSS) will be used for complexation of MgCl2 salt ions to increase its molecular weight 

hence it is expected to reduce the RSF. Additionally, since the complexation of metal 

ions is heavily dependent on pH of the solution and the loading of the complexing 

agent (Rivas et al., 2011; Crini et al., 2017), thus both of these parameter are also 

studied. 

1.3 Objectives of the Study 

Main goal of this study is to explore the technique of Cu (II) removal by mean 

of FO using inorganic DS with lowered RSF. Therefore, the objectives of this study 

are divided into three which are: 

 

a) To synthesis, characterize and evaluate the performances of thin-film 

composite membranes (TFCs) fabricated by using different loading ratio of 

piperazine (PIP) and polyethyleneimine (PEI) with trimesoyl chloride (TMC) 

via interfacial polymerization (IP) reaction. 

 

b) To evaluate the effect of pH variation and the complexing agent poly (sodium 

4-styrenesulfonate) (PSS) loadings on the complexation affinity with MgCl2 

draw solution. 

 

c) To evaluate the performance of the complex DS with the selected TFC towards 

copper (II) removal at different concentration using forward osmosis. 

1.4 Scopes of Study 

a) Preparation of Polyamide (PA) layer monomer solutions containing different 

PEI/PIP ratio of 0.0, 0.1, 0.3, 0.5, 0.7, and 1.0 to be interfacially polymerized 

onto substrates of polysulfone (PSf) with molecular weight cut-off (MWCO) 

of 20,000 Da. 
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b) Characterization of the synthesized TFCs membranes for their 

physicochemical properties using SEM, FESEM, FTIR, zeta potential, AFM, 

and contact angle goniometer. 

 

c) Evaluate the preliminary performances of TFCs under NF process for its pure 

water flux and Cu (II) rejection using initial feed of 200 ppm Cu2+ ion 

concentration. Membrane autopsy was done after the preliminary Cu (II) 

rejection study using EDX analysis. 

 

d) The best two TFCs membranes that exhibit high Cu rejection from previous 

experiment were to be used in FO experiment under active layer facing feed 

solution (AL-FS) configuration for the water flux and reverse solute flux with 

DI water was used as feed and MgCl2 as draw solution at different 

concentration of 0.5 M, 1.0 M and 2.0 M.  

 

e) The effect of pH on the affinity of the complexing agent towards MgCl2 was 

studied using 0.02 M MgCl2 at different pH (3.0, 5.0, 7.0 and 9.0) and fixed 

amount of 0.5mL 1w/v% PSS was added. Using the best TFC which showing 

the better water flux from previous experiment, water flux and Mg (II) rejection 

were determined using dead-end filtration system, 

 

f) Determination of the best complexing agent loading based on the best pH 

selected from previous experiment. The loading of the PSS was varied at 0.1, 

0.5. 1.0, 2.5 and 5.0 w/w % in 500 mL of 1.0 M MgCl2 DS. Using ultrapure 

water as feed in FO, water flux and RSF are determined under AL-FS 

configuration. 

 

g) Study on copper removal in FO using the best selected TFC and PSS-MgCl2 

complex with the best pH and loading as draw solution. By using 1000, 2500 

and 5000 ppm of Cu2+ ion from CuSO4 solution as feed, water flux and Cu (II) 

rejection were determined. 

 



 

8 

1.5 Significance of the Study 

The potential of FO has raised this emerging technology for applicability in 

various applications such as sea water desalination and wastewater treatment. This 

research is basically focusing on the heavy metals removal application particularly Cu 

(II) using FO. Industries that has Cu (II) in its wastewater such as electroplating, alloy 

and pigment manufacturing and many more can be profited from this research. 

Inorganic DS like MgCl2 was commonly used in many FO application. Optimization 

of FO limitation on the DS plays an important role for the system to run at its most 

efficient way. Innovative approach to reduce the effect of RSF by applying the concept 

of complexation may lift the drawback of the MgCl2 DS. Based on the outcomes of 

this study, an effective pre-treatment of wastewater laden with heavy metal is 

proposed. The contamination of heavy metal beyond standard limit into the freshwater 

stream can be avoided and eventually will be benefiting the environment, the country 

and humankind. 
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