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  ABSTRACT 

Although ultrafiltration (UF) membranes have gained considerable attention 

in water separation and purification process, most of the materials used for 

commercial UF membranes fabrication are not able to degrade/decompose easily and 

tend to cause severe environmental problem when they are discarded. In view of this, 

an environmentally friendly hydrophilic polymeric material - polylactic acid (PLA) 

has been considered in this work, aiming to reduce not only the environmental 

impacts caused by the existing membranes but also to improve membrane water flux 

and antifouling resistance. In this study, the effects of PLA quantity and air gap 

(during spinning process) on the morphology and liquid separation performance of 

polyvinylidene fluoride (PVDF) hollow fiber membranes were investigated. The 

membrane properties were characterised using scanning electron microscope, atomic 

force microscope, Fourier transform infrared spectrometer, tensile tester and contact 

angle goniometer before filtration experiment was conducted. Results showed that 

the incorporation of low quantity of PLA (with PLA/PVDF weight ratio of ≤1.0) 

could significantly improve the membrane water flux from ~30 to 376.7 L/m2. h. bar 

without compromising rejection (95–97%). More importantly, the PLA-modified 

PVDF membranes required a much lower temperature to decompose which 

minimizes environmental impacts. Owing to the improved surface hydrophilicity 

(lower water contact angle), the PLA-modified PVDF membranes also exhibited a 

higher flux recovery rate than that of pure PVDF membrane, revealing the improved 

antifouling resistance against bovine serum albumin. The findings of this work 

demonstrated that biodegradable PLA has the potential to modify the characteristics 

of UF membranes, leading to an enhanced water treatment process.  
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ABSTRAK 

Walaupun membran ultrafiltrasi (UF) telah banyak mendapat perhatian dalam 

proses pemisahan dan penulenan air, kebanyakan bahan yang digunakan untuk 

fabrikasi membran UF komersial tidak dapat diuraikan dengan mudah dan cenderung 

menyebabkan masalah alam sekitar yang teruk apabila dibuang. Berdasarkan 

pandangan ini, bahan polimer hidrofilik yang mesra alam - asid polilaktik (PLA) 

telah dipertimbangkan dalam kerja ini, bertujuan untuk mengurangkan bukan sahaja 

kesan alam sekitar yang disebabkan oleh membran yang sedia ada tetapi juga untuk 

memperbaiki fluks air membran dan rintangan antikotoran. Dalam kajian ini, kesan 

kuantiti PLA dan sela udara (semasa proses berputar) pada morfologi dan prestasi 

pemisahan cecair membran gentian berongga polivinilidena fluorida (PVDF) telah 

disiasat. Sifat-sifat membran dicirikan dengan menggunakan mikroskop elektron 

imbasan, mikroskop daya atomik, spektrometer infra-merah jelmaan fourier, penguji 

tegangan dan goniometer sudut sentuhan sebelum filtrasi dijalankan. Keputusan 

menunjukkan bahawa penggabungan kuantiti kecil PLA (dengan nisbah berat PLA / 

PVDF ≤1.0) dapat meningkatkan fluks air membran dari ~ 30 hingga 376.7 

L/m2. h. bar tanpa menjejaskan penolakan (95-97%). Lebih penting lagi, membran 

PLA-terubahsuai PVDF memerlukan suhu yang lebih rendah untuk mengurai yang 

mana meminimumkan kesan alam sekitar. Oleh kerana peningkatan hidrofilik 

permukaan yang lebih baik (sudut sentuhan air yang lebih rendah), membran PLA-

terubahsuai PVDF juga mempamerkan kadar perolehan fluks yang lebih tinggi 

daripada membran PVDF tulen, mendedahkan rintangan antikotoran yang lebih baik 

terhadap albumin serum lembu. Penemuan kerja ini menunjukkan bahawa PLA boleh 

biodegradasi berpotensi untuk digunakan untuk mengubah ciri-ciri membran UF, 

yang membawa kepada peningkatan proses rawatan air.  
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CHAPTER 1  

 

 

INTRODUCTION 

 Research Background 1.1

Drinking water is essential to human life. Drinking water resources are 

mainly from rivers or water bodies that enter water treatment plant (WTP) before 

distribution. WTPs are designed to treat contaminants that exist in water bodies such 

as natural organic matter (NOM) and ammonia. These compounds are found in the 

water body or soil in the upstream of water bodies. Mostly they are from plantation 

or aquatic plants that flow in water bodies by precipitation, underground flow and 

flood.  

However, there are some problems in existing WTP where the presence of 

free chlorine content that is used as a disinfectant is found to react with residual 

NOMs. This reaction process has been found to have a tendency to form disinfection 

by-products (DBPs) such as trihalomethanes, haloacetic acids and other halogenatic 

organics. DBPs are carcinogens and direct exposure may lead to cancers, 

miscarriages and nervous system complications [1–4]. 

The increasing soil erosion and flood from unplanned construction and rapid 

economic development on the other hand had also increased the amount of NOMs, 

causing problems to the existing WTP [5]. Certainly, up to date, some of the existing 

WTPs are not able to eliminate these DBPs to a satisfactory level, thus an advanced 

treatment process is needed [6]. 

At present, the development of membrane technologies has attracted attention 

in the field of water treatment process. Ultrafiltration (UF) membranes in particular 

are used for removal of large particles. Although UF membranes have gained 

considerable attention in water separation and purification process, most of the 
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materials used for commercial UF membranes fabrication are not able to degrade/ 

decompose easily and tend to cause severe environmental problems when they are 

discarded. In view of this, an environmentally friendly hydrophilic polymeric 

material - polylactic acid (PLA) has been considered in this work, aiming to reduce 

not only the environmental impacts caused by the existing membranes but also to 

improve membrane water flux and antifouling resistance. 

 Problem Statements 1.2

Natural organic matter (NOM) found in the water environment is ubiquitous 

and chemically complex organic compound. A study showed that NOM is one of the 

main pollutants in drinking water production mainly because of the generation of 

disinfection by-products (DBPs) such as trihalomethanes (THMs) and haloacetic 

acids (HAAs) when NOM interacts with chlorine in water [7]. Direct exposure to the 

DBPs can cause cancers, miscarriages and nervous system complications [1–3]. 

Therefore, effective removal of NOM is a significant and challenging research topic 

in the current development of water purification. Humic acid (HA) is the major 

species in NOM and accounts for 50–90% of the total freshwater organic matters 

[2,3]. Scientists always considered HA as a model compound in the studies of water 

treatment process using membrane-based technology [1–3].  

UF membrane process receives a wider attention compared to other 

membrane technologies such as reverse osmosis (RO), nanofiltration (NF) and 

microfiltration (MF) due to its good balance between water flux and rejections 

against colloids, macromolecules and suspended particles [8–12]. One of the main 

polymeric materials that is widely used for the commercial UF membranes 

fabrication is polyvinylidene fluoride (PVDF). Compared to polysulfone (PSF) and 

polyethersulfone (PES), PVDF offers greater thermal stability and mechanical 

property as well as outstanding chemical and oxidation resistance [8,11,13–15]. 

However, PVDF is not made of biodegradable material and requires longer time to 

achieve complete degradation upon dump site disposal [16]. In view of this, it is a 
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great significance if a novel membrane material is able to be developed using 

biodegradable polymer.  

Biodegradable materials can be broken down by microorganisms, producing 

harmless compounds for nature. These kinds of materials have already been widely 

used in food packaging, daily necessities, containers, and medical instruments 

[13,16]. Among the biodegradable materials, polylactic acid (PLA, formula: 

(C3H4O2)n) - a polymer produced from natural sources like corn is widely reported in 

the literature [13,16]. Statistics from the SCOPUS reveal that there are more than 

3,000 papers reporting the use of PLA for various applications over the past 10 years 

(2007–2018). PLA is possibly degraded in soil, compost or human body. In a 

composting environment the PLA is hydrolyzed into smaller molecules, e.g., 

oligomers, dimers and monomers after 45–60 days at 50–60°C. These smaller 

molecules are then degraded into CO2 and H2O by microorganisms in compost 

[17,18]. 

Incorporation of hydrophilic biopolymer like xanthan gum (XA) into PES 

membrane had been previously reported for HA removal. The modified PES 

membrane was reported to exhibit enhanced water permeability (24.8 

L/m2.h.bar) with HA rejection above 80% [19]. Similar to XA, PLA which is also a 

hydrophilic biopolymer has potential to be used for membrane modification. 

Previous studies have investigated the potential of using PLA and its derivatives for 

membrane fabrication. For instance, PLA/poly(lactic acid)-block-poly(2-

hydroxyethyl methacrylate) (PLA–PHEMA) membranes with high PLA–PHEMA 

contents exhibited enhanced hydrophilicity, water permeability and anti-fouling 

resistance [20]. Upon addition of 15 wt% PLA–PHEMA, the water flux of the 

resultant membrane was reported to be about 236 L/m2.h.bar with bovine serum 

albumin (BSA) clearance as low as 0.31 mL/min [20]. Shen et al. [21] on the other 

hand reported that the incorporation of PLA-based copolymer could improve the 

hydrophilicity of membrane by decreasing water contact angle from around 80° to 

60°, leading to enhanced water permeability and greater antifouling properties. 
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Previous studies have shown that hydrophilic PLA could be used to modify 

the properties of PSF nanofiber membrane with respect to pore dimension [22] and 

oil sorption capacity [23], but using PLA as additive for asymmetric UF membrane 

fabrication has yet to be reported in the literature. It must be pointed out that the 

membranes made of pure PLA are not likely to be used for pressure-driven process 

owing to the poor mechanical properties of PLA film [16-17]. Thus, PLA can only 

be considered as additive to modify the existing membranes.  

In view of this, the main objective of this work was to modify PVDF-based 

hollow fiber membrane using biodegradable PLA, aiming to produce 

environmentally friendly membranes with enhanced water flux and antifouling 

properties for water treatment process.  

 Research Objective 1.3

Based on the above-mentioned problems, the main objectives of this work were: 

1) To characterize PVDF/PLA blend hollow fiber membranes with different 

properties by varying PLA:PVDF ratio in dope solution and air gap during 

spinning process. 

2) To evaluate filtration performance of PVDF/PLA blend membrane as advanced 

treatment process in purifying water source containing organic foulants. 
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 Scopes of the Study 1.4

In order to achieve the objectives of this research, the following scopes are outlined:  

1) Preparing a spinning solution made of different ratio of PLA/PVDF ratio 

(0, 0.3, 1, 2 and 3) with the presence of 5 wt% polyvinylpyrolidone 

(PVP).  

2) Fabricating hollow fiber membrane via spinning technique by varying air 

gap from zero to 8 cm using the dope solutions prepared. 

3) Characterizing membrane properties using Fourier transform infrared 

(FTIR), scanning electron microscopy (SEM), contact angle 

measurement, atomic force microscope (AFM) analysis, 

thermogravimetric analysis (TGA), tensile machine and goniometer 

contact angle. 

4) Evaluating PLA/PVDF hollow fiber membrane performance with respect 

to pure water flux, humic acid rejection and antifouling properties using 

bovine serum albumin (BSA) as foulant. 

5) Investigating PLA leaching from the PVDF membranes by analyzing the 

water solution using total organic carbon (TOC) analyzer 

6) Assessing performance of PLA/PVDF hollow fiber membrane towards 

river water treatment by measuring river water flux and reduction of 

turbidity, conductivity and chemical oxygen demand (COD). 

 Significance of Study 1.5

The significance of the current research was to develop a more 

environmentally friendly UF membrane for water application using biodegradable 

polymer - PLA. Besides being environmentally friendly, the PVDF-based hollow 

fiber membrane embedded with PLA as secondary polymer also exhibited greater 

water flux without compromising HA rejection. More importantly, the PLA-modified 

PVDF membranes required much lower temperature to decompose which minimizes 

environmental impacts. Owing to the improved surface hydrophilicity (lower water 
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contact angle), the PLA-modified PVDF membranes also exhibited higher flux 

recovery rate than that of pure PVDF membrane, revealing the improved antifouling 

resistance against bovine serum albumin. 
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