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ABSTRACT 

The main purpose of this work was studied the effect of ZIF-8 loading on the 

physical and chemical properties of dual-layer hollow fiber (DLHF) mixed matrix 

membranes (MMMs). In addition, the effect of the outer dope extrusion rate (DER) of 

the spinning on the selective layer thickness of the DLHF membrane was 

investigated. Finally, the gas separation performance of the coated DLHF membranes 

under different ZIF-8 loading and outer DER was evaluated. The recipe for the 

prepared DLHF membrane is: polysulfone (PSf) as polymer, N, N-dimethylacetamide 

(DMAc) and tetrahydrofuran (THF) as solvents, and at the same time, the metal 

organic framework (MOF) ZIF-8 Only added to the outer solution. Then, the solution 

was co-extruded through triple orifice spinneret in order form dual layer structure of 

membrane, where the inner layer was consists of pure PSf and the outer layer were the 

PSf and ZIF-8. Field emission scanning electron microscopy (FESEM), X-ray 

diffraction (XRD), Thermogravimetric analysis (TGA) and Scanning electron 

microscopy (SEM) were used to analyse the ZIF-8 material and to detect DLHF 

membranes. The main findings that obtained from this research are as below: (1) 

Zeolite imidazole framework8 (ZIF-8) nanoparticles were successfully synthesized in 

aqueous solution with a particle size of 86.25 nm. (2) Successfully prepared DLHF 

membrane with high heat resistance, good chemical stability and good interaction 

between polymer PSf and filler ZIF-8. (3) The optimal loading of ZIF-8 was 0.5wt%, 

and the CO2 permeability increased dramatically by 61.19% compared to the neat 

membrane, and the selectivity of CO2/CH4 also improved significantly by 94.46%. (4) 

The experiment further concluded that when the outer DER was 1 ml/min, the 

prepared membrane was thin and no defects on the top skin layer. The good 

combination of ZIF-8 and PSf substrates and the appropriate outer DER explain the 

application and significance of the novel DLHF membrane.
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ABSTRAK 

Tujuan utama kerja ini adalah mengkaji kesan pemuatan ZIF-8 terhadap sifat-

sifat fizikal dan kimia membran matriks bercampur dwi-serat rongga (DLHF). Di 

samping itu, kesan kadar penyemperitan dadah luar (DER) yang berputar pada 

ketebalan lapisan terpilih membran DLHF telah disiasat. Akhirnya, prestasi 

pemisahan gas membran DLHF bersalut di bawah pemuatan ZIF-8 yang berbeza dan 

DER luar telah dinilai. Resipi membran DLHF yang disediakan ialah polysulfone 

(PSf) sebagai polimer, N, N-dimetilacetamide (DMAc) dan tetrahydrofuran (THF) 

sebagai pelarut, dan pada masa yang sama, rangka organik logam (MOF) ZIF-8 

kepada penyelesaian luar. Kemudian, larutan itu diekstrusi melalui tiga spinneret 

orifis untuk membentuk struktur lapisan dua lapisan membran, di mana lapisan 

dalaman terdiri daripada PSf tulen dan lapisan luar adalah PSf dan ZIF-8. Mikroskop 

elektron scanning emission field (FESEM), X-ray difraksi (XRD), analisis 

Thermogravimetric (TGA) dan Mikroskop elektron scanning (SEM) digunakan untuk 

menganalisis bahan ZIF-8 dan untuk mengesan membran DLHF. Penemuan utama 

yang diperolehi daripada penyelidikan ini adalah seperti berikut: (1) Rangka 

nanopartikel Zeolite8 (ZIF-8) berjaya disintesis dalam larutan berair dengan saiz 

zarah sebanyak 86.25 nm. (2) Membakar DLHF dengan berjaya dengan rintangan 

haba yang tinggi, kestabilan kimia yang baik dan interaksi yang baik antara polimer 

PSf dan pengisi ZIF-8. (3) Beban optimum ZIF-8 adalah 0.5%, dan kebolehtelapan 

CO2 meningkat dengan ketara sebanyak 61.19% berbanding membran yang kemas, 

dan pemilihan CO2/CH4 juga bertambah baik dengan ketara sebanyak 94.46%. (4) 

Eksperimen selanjutnya menyimpulkan bahawa apabila DER luar adalah 1 ml / min, 

membran yang disediakan nipis dan tiada kecacatan pada lapisan atas kulit. Gabungan 

yang baik dari substrat ZIF-8 dan PSF dan DER luar yang sesuai menjelaskan aplikasi 

dan kepentingan membran DLHF novel. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background of study 

Natural gas is a naturally occurring hydrocarbon gas mixture mainly 

consisting of methane (CH4) and carbon dioxide (CO2) which is the by-product of the 

natural compression process that take billions of years ago inside the small rock that 

are located beneath the ground surface several miles away. Natural gas is a fossil fuel 

preferable world’s energy source provides energy for heating, used in combined heat 

and power, electricity generation and also as a fuel for vehicles but it requires 

purification from impurities. Therefore, before use by consumers, natural gas must 

undergo a pre-treatment process to remove impurities such as CO2 and hydrogen 

sulfide (H2S), nitrogen, mercury, and even water content. CO2 is one of the main 

greenhouse gases (GHG), which is emitted into the atmosphere through the burning 

of fossil fuels such as coal, oil and natural gas. (Hosseini and Wahid, 2013). 

Therefore, the removal of CO2 is the most critical and important step in the 

purification of natural gas, because its presence can lead to corrosion of the pipeline, 

reduce the heating value and increase the maintenance time. 

In the past half century, the use of gas separation membranes in the industry 

represents only a small fraction of potential applications. Most recent applications 

involve purifying or separating non-condensable gases, Several polymer membrane-

based gas separation modules operate around the world and can be divided into four 

main applications, including separation of nitrogen from air, separation of carbon 

dioxide from natural gas, hydrogen recovery and vapor recovery (Karimi et al.,2019). 

There are four types of technologies which are commercially available on an 

industrial scale for purification of natural gas. Adsorption, physical and chemical 

absorption, membrane separation and cryogenic technique. For example, chemical 

absorption gives high CH4 concentration >99% with low operational costs but high 
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investment costs and heat is required for regeneration of solvent (Chen et al., 2015). 

In addition, membrane technology is very economic and low cost of maintenance but 

for high purity multiple steps are required (Baker and Lokhandwala, 2008; Zhao and 

Leonhardt, 2010).  

Membrane materials are at the heart of membrane separation technology. The 

quality of the membrane directly affects its application prospects. The permeability 

coefficient and selectivity of the material are controlled by the Robeson upper limit. 

That is, an increase in the permeability coefficient results in a decrease in selectivity 

and vice versa. Therefore, scientists are insisting on the study of membrane materials 

with stable physical and chemical properties, high selectivity and high permeability. 

These properties depend on the composition, structure and chemical properties of the 

membrane material. According to the type of membrane material, separation 

membranes are mainly divided into three categories: inorganic membranes, organic 

polymer membranes, and mixed matrix membranes. According to the transfer 

mechanism, the organic polymer membrane can be further divided into a common 

polymer membrane (breathable membrane) to promote the transfer membrane and 

the gas liquid membrane contactor (Adewole et al., 2013). 

Polymer membrane is a commercial type widely used for gas and liquid 

separation, because it offers high-performance separation with lower operating cost. 

It is extensively used for different separation applications like wastewater treatment, 

gas separation, seawater desalination, distillation and much more (Fakult and 

Hussain, 2013). Despite the many advantages, polymer membranes are limited by the 

trade-off between permeability and selectivity (Robeson, 2008). The trade-offs 

characterized as high permeability membranes are accompanied by low selectivity 

properties and vice versa. This factor is often considered to be a major key factor 

hindering its potential application in the separation process. 

Therefore, the researchers have found an opportunity to develop a new class 

of membrane called mixed matrix membrane (MMM) which consists of the polymers 

and inorganic nanoparticles as a dispersed phase. Ideally, separation performance 

significantly increased due to the dispersion of inorganic nanoparticles into the 
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polymer matrix (Chung et al., 2007). The nanoparticles dispersed in the polymer 

improve gas separation performance by (1) providing a path to hinder 

macromolecular penetration (Hudiono et al., 2010), (2) molecular sieve principle 

(Kwon et al., 2011), and (3) destruction of polymer chains (Zornoza et al., 2011), 

Polymer-filler compatibility is often considered a challenge in MMM development 

because it directly reflects the morphology, performance, and size of the membrane 

and, therefore, requires more development to fully exploit its potential. 

From the last few years, the fabrication of dual-layer hollow fiber (DLHF) 

membranes has largely investigated topic for gas separation (Li et al., 2002; Widjojo 

et al., 2008; Li et al., 2006). It is economical process employ high-performance 

polymers as an outer layer to form composite hollow fiber membrane (Strathmann, 

2001);(McKelvey et al., 1997). It is composed of a thin selective outer layer and 

porous supporting inner layer. However, the gas separation is mainly achieved by the 

dense selective layer. The outer layer generally provides the Permeability and 

selectivity, while the inner layer provides the required mechanical and thermal 

support. Therefore, economical polymers with good mechanical and thermal 

properties can be used for it. Following morphological aspects are also very 

important for an ideal dual-layer hollow fiber membranes, such as (1) the outer and 

inner layers of the DLHF membrane should not be delaminated (Widjojo et al., 

2008), (2) the structural frame of the inner layer must be porous to minimize gas 

transport resistance through the inner layer (Li et al., 2002a). 

Co-extrusion is a process of making a multilayer membrane in a single step in 

which two or more polymer solutions are extruded through a single die and joined 

together at the triple orifice. The DLHF membranes fabrication by the co-extrusion 

technology serves as an innovative idea in its research and development. Dual-layer 

hollow fiber membranes prepared by the co-extrusion technique retain all the 

advantages of conventional single-layer hollow fiber membranes: (1) high membrane 

area per unit membrane module volume, resulting in a higher productivity; (2) highly 

selective and permeable layer could be formed by deploy brittle materials; and (3) 

good flexibility and ease of handling during module fabrication and system 

operation; (4) the DLHF membrane can form not only a selective structure on the 
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outer layer but also a porous support frame in the inner layer. Therefore, co-extrusion 

is more attractive than conventional hollow fiber membrane (Sun et al., 2010). 

Selection of outer layer and inner layer materials are an equally crucial factor 

to develop high-performance dual-layer membrane. To avoid interfacial 

delamination, polysulfone (PSf) is chosen as the material for both outer and inner 

layers because of its high mechanical and thermal characteristics. In addition, 

synthesized zeolitic imidazole framework 8 (ZIF-8) nanoparticles will be chosen as 

additives in the outer dope solution. The presence of phenylene unit in PSf linked 

with isopropylidene, ether, and sulfone, provides the polymer with good chemical 

resistance, thermal stability, and mechanical strength. For CO2/CH4 separation, PSf 

has an excellent balance between permeability and selectivity to CO2 and has high 

plasticizing pressure. (PPlasticization ~ 34 bar (Bos et al., 1999)) while a relatively 

cheaper material has compensated itself as preferable continuous phase.  

The uniform dispersion of inorganic nanoparticles in a dual-layer membrane 

is a formidable challenge because the low compatibility of the polymer filler results 

in the formation of macromolecules, thereby reducing the selectivity of the gas (Jiang 

et al., 2005). Compared to other fillers, the metal-organic framework (MOF) has 

been shown to have good affinity for polymer matrices without surface modification. 

MOF is a crystalline compound having metal ions and organic ligands as repeating 

units and systematically arranged in a frame. The presence of organic ligands in their 

structure provides a good interaction with the polymer matrix, thus greatly reducing 

the disadvantages. 

Zeolitic imidazole frameworks (ZIFs) are a subclass of MOF and ZIF-8 is 

one of the newly synthesized types of ZIFs. In particular, ZIF-8 is one of the most 

studied prototypes of ZIFs due to its potential functional application of gas storage 

(CO2, H2 and acetylene), catalysis and gas separation. The ZIF-8 has a large hole of 

11.6 Å and has a hole diameter of 3.4 Å through a small hole. It has a cubic space 

group (I-43 nm) and a unit size of 16.32 Å. It has a pore size of the sodalite (SOD) 

zeolite type structure which is about twice that of the corresponding SOD zeolite. 

Due to its highly porous open frame structure, it is easy to enter the organically 
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linked edge and face of the pore volume which is completely exposed. With a range 

of kinetic diameters of gas molecules, and high CO2 adsorption capacity, ZIF-8 is an 

attractive application for gas separation. In addition, it has been shown that ZIF-8 is a 

chemically stable aromatic hydrocarbon such as benzene in the presence of water. 

Making this particular ZIF component may be useful for separating CO2 from CH4 

(Venna and Carreon, 2010). 

Recently, it is very less concern has been devoted to ZIF-8 loading and outer 

DER. Therefore, the purpose of this study is to develop a defect-free product with 

coating and ZIF-8 uniformly dispersed MMM, and based on the effect of ZIF-8 

loading and external extrusion rate on the performance of DLHF membranes. Thus, 

the main objective of this study is to study the effect of outer dope extrusion rate 

(DER) and ZIF-8 loading on the morphology of DLHF membranes. X-ray diffraction 

(XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), 

and field emission scanning electron microscopy (FESEM) techniques were used to 

characterize the structural of ZIF-8 and the prepared DLHF membranes. Finally, the 

selected ZIF-8-based DLHF membrane was applied to a membrane contactor to 

detect the selectively and permeance. 

1.2 Problem statement 

To choose suitable membrane materials is a primary requirement to fabricate 

high performance defect-free membranes with low cost, high thermal stability and 

plasticization resistance at elevated pressure. Most of the inorganic fillers are not 

compatible with the polymer phase and cause the occurrence of non-selective 

interfacial voids that leads to reducing the gas separation performance due to 

unselective pathways at the filler interfaces. Hence, it is necessary to investigate the 

common problems such as filler size and loading, compatibility with polymers, and 

gas separation performance in the MMMs. However, the available ZIF-8 possesses 

large particle sizes (particle size of ~300nm) and this will become a huge challenge 

for the ZIF-8 filler defect-free dispersion in the thin outer layer of DLHF. ZIF-8 is 

considerably expensive, Sigma Aldrich, one of the MOFs marketing companies, 

announced  the ZIF-8 cost of RM 25,733 for 500g,  relatively expensive compared to 
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synthesis materials used in this research such as 2-methylimidazole (RM 652/kg), 

zinc nitrate hexahydrate (RM 13,256/kg) and base-type additive triethylamine (RM 

263/500ml). Dual-layer hollow fiber membranes provide a solution for a wide range 

of applications for high performance but expensive materials compared to single 

layer membranes, because it only uses them for the selective outer layer instead of 

the whole membranes. Therefore, the choice of co-extrusion dual-layer technology is 

undoubtedly the most economical and flexible way. 

However, the fabricate based ZIF-8/PSf dual-layer hollow fiber membrane 

with desired morphology and separation performance is still an important work. The 

effects of spinning parameters, such as spinneret temperature, air gap, draw ratios, 

bore fluid rate, coagulant temperature. This research found that the co-extrusion rate 

between the outer and inner layer also play a major role in the thickness of dual-layer 

membrane. Therefore, it should carefully be taken into consideration to produce 

desired thickness delamination-free dual-layer membranes. Also, different shrinkage 

rates of the outer and inner layers are the main cause of delamination. Different 

methods to reduce substructure resistance between the outer and inner layers may 

result in delamination due to a different shrinkage rate of these two layers during 

precipitation and solvent exchange (Li et al., 2002b). To achieve desired morphology 

of DLHF membrane, control of both inner and outer dope solutions concentration 

and varying the co-extrusion rate process is important (Jiang et al., 2004).  

Therefore, this study is aimed to fabricate MMMs for CO2 separation using 

synthesized ZIF-8. Furthermore, the effect of the different loading of fillers and feed 

pressures on the gas separation performance of prepared MMMs is evaluated. 

Moreover, the co-extrusion rate of dope solution on thickness of prepared MMMs 

membrane is evaluated. To date, the incorporation of ZIF-8 particles has primarily 

been subjected to the preparation of flat sheet membranes, whereas studies on ZIF-8 

based DLHF membranes are rarely investigated.  
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1.3 Objectives of study 

The major goal of this research was to produce dual layer mixed matrix 

hollow fiber membranes with ZIF-8 based materials as the filler via dry-wet phase 

inversion process with improve gas separation performance. The specific objectives 

of the study are as follows: 

a) To investigate effect of ZIF-8 loading on the physical and chemical properties 

of dual-layer hollow fiber membrane. 

b) To examine the influence of outer dope extrusion rate of the spinning on the 

DLHF membrane selective layer thickness. 

c) To evaluate the gas separation performance of DLHF membrane at different 

ZIF-8 loading and outer dope extrusion rate. 

1.4 Project Scope 

The following research activities were selected as the scope of this study to 

achieve the above objectives: 

a) Synthesizing ZIF-8 filler from zinc hexahydrate (Zn(NO3)2·6H2O,99% 

purity), 2-methylimidazole (Hmim, 99% purity) and triethylamine (TEA, 

99.5% purity). 

b) Analyzing the structure of ZIF-8 by X-ray diffraction (XRD), and field 

emission scanning electron microscopy (FESEM). 

c)  Preparing the polymer solution by mixing polysulfone (PSf, 28%), N, N-

dimethylacetamide (DMAc, 37%), tetrahydrofuran (THF, 35%), while 

varying ZIF-8 loading range from 0-1% by weigh. 

d) Fabricating high performance DLHF membrane by varying the outer DER 

from 0-2 cm
3
/min. 
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e) The membranes were externally coated using 3 wt% of Pebax dissolved in 

ethanol. 

f) Characterizing the membrane properties using Scanning Electron Microscopy 

(SEM), Energy-dispersive X-ray spectroscopy (EDX), Fourier Transform 

Infrared Spectroscopy (FTIR) and Thermogravimetric Analysis (TGA). 

g) Evaluating the gas separation performance of the produced mixed matrix 

DLHF membranes was evaluated using pure gases (CO2 and CH4). 

1.5 Significance of study 

The importance of this process is emphasized by the formation of ZIF-8 

particles under deionized water conditions. In particular, this method allows the 

metal framework and the organic ligand to be rapidly combined, since the base 

additive TEA is capable of inducing deprotonation of the organic ligand. And other 

synthetic methods such as solvothermal synthesis, hydrothermal synthesis, ion 

thermal synthesis, acoustic synthesis. In contrast, the alternatives provided in this 

study are very economical, environmentally friendly, non-polluting, with improved 

morphology and gas separation performance. 

Compared with traditional single-layer hollow fiber membranes, ZIF-8/PSf 

based double-layer hollow mixed matrix membranes have obvious advantages, such 

as (1) significantly saves inorganic materials cost; (2) highly selective and permeable 

layer; (3) good flexibility and ease of handling during module fabrication and system 

operation; (4) the DLHF membrane has a thinner selective outer layer and a good 

support structure for the inner layer. 
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