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ABSTRACT 

Heat Exchanger are among those engineered designs in which is widely used 

among many industries. Thus, in this research a double pipe heat exchanger is 

numerically and mathematically investigated, in which the various characteristics of 

heat transfer are evaluated. The experiment is mainly conducted using nanofluids, 

hence why the characteristics of the nanofluid itself is also considered a variable. 

Copper oxide, and aluminum oxide are the two nanoparticles used to conduct the 

simulation. Each of these are tested using different diameter sizes, as well as different 

concentrations dissolved in water. The Reynolds Number is also floating between 5000 

and 20,000. The aim is to determine the effect of volume friction and diameter of 

nanoparticle on heat transfer and fluid flow, via the use of a double pipe heat 

exchanger. This is done by numerically investigating the heat exchanger by using 

ANSYS software system, which is able to simulate the results as well as the various 

characteristics involved. The results indicated that aluminum oxide is superior to 

copper oxide in terms of heat transfer enhancement. They also indicated that as the 

diameter of the nanoparticles increased, the heat transfer effectiveness decreased. The 

most optimal solution presented itself as the lowest diameter, and highest 

concentration in relation to the base fluid. When compared to the conventional fluid 

(water) the heat transfer coefficient was improved by 94.7% on average, and the 

Nusselt Number was also improved by 44.5%. Furthermore, there was a 45.37% 

improvement observed when comparing the best obtained results to an existing 

literature that uses a double pipe heat exchanger, and a 61.3% improvement for when 

the results are compared to an existing baseline straight tube heat exchanger. The 

results also indicated that there are minor differences between parallel and counter-

flow regimes in the double pipe heat exchanger, with the counter-flow performing 

better at higher Reynolds numbers, while the parallel performs better when under 

10,000 Reynolds number. This indicates that the proposed solution is practical and 

better to use versus water. 
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ABSTRAK 

Pembalik haba adalah antara reka bentuk rekayasa yang banyak digunakan di 

kalangan industri-industri. Oleh itu, dalam penyelidikan ini penukar haba paip 

berganda diselidiki secara numerik dan matematik, di mana pelbagai ciri pemindahan 

haba dinilai. Eksperimen ini dijalankan terutamanya menggunakan nanofluid, oleh itu 

mengapa ciri-ciri nanofluid itu sendiri juga dianggap pemboleh ubah. Tembaga oksida, 

dan aluminium oksida adalah dua nanopartikel yang digunakan untuk melakukan 

simulasi. Masing-masing diuji dengan menggunakan ukuran diameter yang berbeza, 

serta kepekatan yang berlarutan di dalam air. Nombor Reynolds juga terapung antara 

5000 dan 20,000. Tujuannya adalah untuk menentukan kesan geseran isipadu dan 

diameter nanopartikel pada pemindahan haba dan aliran bendalir, melalui penggunaan 

penukar haba paip berganda. Ini dilakukan dengan memeriksa penukar haba secara 

berangka dengan menggunakan sistem perisian ANSYS, yang dapat mensimulasikan 

hasilnya serta pelbagai ciri yang terlibat. Hasil kajian menunjukkan bahawa aluminium 

oksida lebih unggul daripada oksida tembaga dari segi peningkatan pemindahan haba. 

Ini juga menunjukkan bahawa ketika diameter nanopartikel meningkat, keberkesanan 

pemindahan haba menurun. Penyelesaian yang paling optimum menunjukkan ianya 

sebagai diameter terendah, dan kepekatan tertinggi berkaitan dengan bendalir asas. 

Jika dibandingkan dengan cecair konvensional (air), pekali pemindahan haba 

meningkat rata-rata 94.7%, dan Nusselt Number juga bertambah 44.5%. Selain itu, 

terdapat peningkatan 45.37% yang diperhatikan ketika membandingkan hasil terbaik 

yang diperoleh dengan literatur yang ada yang menggunakan penukar haba paip 

berganda, dan peningkatan 61.3% untuk ketika hasilnya dibandingkan dengan penukar 

panas tiub lurus garis dasar yang ada. Hasilnya juga menunjukkan bahawa terdapat 

perbezaan kecil antara rejim selari dan aliran balik dalam penukar haba paip berganda, 

dengan aliran balas yang lebih baik dalam jumlah Reynolds yang lebih tinggi, 

sementara selari menunjukkan prestasi yang lebih baik ketika di bawah 10.000 jumlah 

Reynolds. Ini menunjukkan bahawa penyelesaian yang dicadangkan adalah praktikal 

dan lebih baik digunakan berbanding air. 
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INTRODUCTION 

1.1 Background of the Study 

Heat exchangers play a great role in energy efficiency, as the world is moving 

towards a more fuel efficient environment, and the industries aim to save capital and 

resources in any way possible, leads to the popularity and importance of the heat 

exchangers as an important energy management system. Heat exchangers are also used 

in many everyday appliances and utilities, from refrigerators, to air conditioners, they 

usage is rather universal. Thus, the popularity and usage of double pipe heat 

exchangers has only grown with the rising demand in the industry (Goodarzi et al., 

2016; Hashemian et al., 2016; Sheikholeslami et al., 2016a; Bahmani et al., 2018). 

Generally, heat transfer methods are divided into two types of active and 

passive (Sidik et al., 2017). Each of these types depends on the source in which they 

originate from. While the active techniques rely on an external source in order to 

regulate the heat transfer process, the passive techniques would focus on internal 

solutions, such as changing the chemistry of the fluid involved as well as changing the 

shape of the pipes or tubes. In this scenario, a double pipe heat exchanger has been 

proved to be an effective form of heat transfer enhancement. On the other hand, other 

techniques such as the usage of nanofluids, which are basically a mixture of a base 

fluid such as water, with nanoparticles, have shown to improve the heat transfer rate 

as well.  

Previously, there has been studies that use a double pipe heat exchanger in 

order to improve heat transfer rate (Goodarzi et al., 2016; Hashemian et al., 2016; 

Shakiba et al., 2016; Sheikholeslami et al., 2016a; Sheikholeslami et al., 2016c; 

Templeton et al., 2016; Bahmani et al., 2018). For instance, in a research that was 

carried out with the aim of investigating the effectiveness of the double pipe heat 



 

2 

exchanger, it was found that by combining both heat transfer and a variety of different 

working fluids, that the heat transfer rate is enhanced considerably when compared to 

a base fluid with no nanoparticles (Goodarzi et al., 2016). Another researcher 

investigated the effect of discontinuous helical tabulators on heat transfer rate and 

characteristics in a double pipe heat exchanger (Sheikholeslami et al., 2016a). The 

results of the experiment indicated that the Nusselt Number and the Friction factors 

are affected by the open area and pitch ratios. However, this relationship has been 

ordained to be a negative relationship, meaning that as one is increased, the other is 

decreased or reduced. A numerical investigation on heat transfer properties of a double 

pipe heat exchanger was performed, which involves in digitally simulating the heat 

exchanger with various characteristics such as those that relate to the thermodynamics, 

as well as the geometrical and hydraulic attributes (Hashemian et al., 2016). Their 

simulation resulted in a solid enhancement in effectiveness of 55%, and a 40% 

improvement in the heat transfer number. 

However, there are other studies that focus on nanofluids as the source of heat 

transfer improvement technique. Some of these techniques use a variety of 

nanoparticles mixed with a base fluid, which can either be water or any other type of 

base fluid, which ultimately contribute into creating the nanofluid. For instance, a 

study that conducted both a numerical, and practical experiment in order to analyze 

the heat transfer effectiveness of α-Al2O3 mixed with water as the base fluid (Akhtari 

et al., 2013). The experiment was conducted using the laminar flow conduction, with 

the results indicating that when compared to pure water, the double pipe performs 

better with a nanofluid than with no nanofluid.  

1.2 Problem Statement 

Conventional fluids such as water, oil, and ethylene glycol have relatively low 

thermal conductivity (Sajid et al., 2019). Thus, in order to enhance the thermophysical 

conduciveness of the liquids, nanoparticles are used that have innately higher thermal 

conduciveness. However, in many industries, the goal is to achieve the highest level 

of heat transfer enhancement. Thus, in most cases a combination of techniques are 
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used in order to increase the performance of the heat transfer rate. Nanofluids is 

considered to be one of the additives that is typically combined with other techniques, 

such as shaped tubes for heat exchangers. 

However, in spite of their great potential, these nanofluids are still in the early 

stages of development. There are several studies that indicate a relationship between 

nanoparticle sizes versus heat transfer coefficient. Some have also reported that an 

increase in concentration (volume fraction) of the nanofluid has led to an improved 

heat transfer (Chamkha et al., 2018). These parameters and factors all have a 

relationship with one another, and understanding this relationship is essential in 

identifying the most optimal combination of the aforementioned factors in order to 

enhance heat transfer. A big unresolved issue for most environmental and industrial 

applications is to find the flow and heat transfer behaviors of nanofluids towards 

different nanoparticle size and concentration on turbulent flow regime (which is 

widely used in all industries) (Sajid et al., 2019). The volume fraction and particle size 

have shown to have great effect on the heat transfer properties, however the extent of 

their usefulness in a parallel flow double pipe heat exchanger needs to be explored 

further. 

Double Pipe Heat Exchangers also have several innate disadvantages, and 

almost none of the existing techniques uses parallel flow, as mostly focus on counter 

flow (Bahmani et al., 2018). Thus, there is a need to enhance the parallel flow heat 

transfer enhancement so that there are less application restrictions.  

In this study, heat transfer and turbulent fluid flow of water/Al2O3-CuO 

nanofluids in a double pipe heat exchanger are numerically investigated. In this 

research, effects of nanoparticles volume fraction and Reynolds Number on 

temperature variations of base fluid, nanofluid and wall, thermal efficiency, Nusselt 

Number and convective heat transfer coefficient has been investigated. According to 

the abundant application of heat exchangers in heat transfer of power plant equipment, 

the results of this research can be used in many industries, especially oil, gas and 

petrochemical industries. 
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1.3 Research Objectives 

The objectives of this research are: 

i. to determine the heat transfer coefficient in parallel flow double pipe heat 

exchanger. 

ii. to measure the effects of flow rate on nanofluids and water for heat transfer 

enhancement. 

iii. to analyze the effects of nanoparticle diameter and volume fraction (starting 

from 1% to 4%) on the heat transfer enhancement. 

1.4 Scope of Research 

The goal of this numerical experiment is to be as thorough as possible when it 

comes to the simulation. However, there are limits set that ensure the simulation 

process remains focused and not devolve into too many variations. For this reason, the 

focus of the simulation is on a parallel flow only, with a turbulent fluid flow 

characteristics using Reynolds Numbers 5,000 to 20,000.  

The nanoparticles used are Copper Oxide (CuO) and Aluminum Oxide 

(Al2O3). These two metal oxide nanoparticles are among the most popular of the 

nanofluids, and are also very cost effective compared to the other metal oxides (Sajid 

et al., 2019). The pattern of these nanofluids is predictable, and thus they are used in 

order to better understand the parameters and characteristics of their effects on heat 

transfer. These particles are combined with water as a base fluid in order to create the 

nanofluid. This combination occurs at different concentrations which is measured in 

terms of volume fraction 1% to 4%. This volume fraction is chosen mainly due to 

previous research only focusing on less than 1% concentration (volume fraction). The 

goal is to see if higher volume fraction can enhance the heat transfer properties further, 
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or that it would have an adverse effect. These values are also at around 4% maximum, 

since more than that is it not cost effective to use nanofluids (Chamkha et al., 2018). 

The particles are also combined at different diameters, 25 nm, 50 nm and 100 

nm. Usually, most studies take a single diameter, and test only using that value, 

however, in this study the goal is to see the effect of various different diameters, versus 

the other parameters that affect heat transfer enhancement. 

There are many unknown factors that can affect the heat transfer effectiveness 

in a heat exchanger. A double pipe heat exchanger is used in order to better isolate the 

heat enhancement criteria, by controlling the temperature of the fluids inside and 

outside of the pipe (Bahmani et al., 2018). Thus, with the use of a double pipe heat 

exchanger, a nanofluid enhancement can be better examined and understood, with their 

underlying parameters that affect it. 

1.5 Significance of Study 

The role of conservation both in energy and material has become a critical point 

of interest as the price of fuel and material increases every day. However, with the 

rapid development and advancements in technology, the demand has only increased 

and become more conscious as with products that are smaller in size and shape, having 

new requirement for heat exchangers in which previously was not an issue. Thus, with 

the increase in demand, more effort has been put into improving the heat transfer rate 

of equipment, via heat transfer enhancement techniques. Based on the existing 

literature, some of the key elements and parameters affecting heat transfer when using 

a double pipe heat exchanger with various types of nanofluids. Furthermore, a 

sensitivity analysis is needed to evaluate the effects of Reynolds Number, 

nanoparticles volume fraction and entrance status of nanofluid on heat transfer rate 

and heat exchanger effectiveness inside a double pipe heat exchanger filled with 

nanofluid. By conducting a numerical study, an understanding of the effects of 

nanoparticles and their benefits are explored in a double pipe environment. This allows 

a deeper understanding of the nanoparticles such as copper oxide and aluminum oxide 
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and their main difference due to their molecular composition. The experiment is also 

conducted on turbulent flow, which changes the way most particles behaves, thus it 

provides different challenges to overcome when it comes to heat transfer optimal level. 

1.6 Research Outline 

This research is structured into five chapters. Each of these chapters cover a 

specific aspect of the research. The structure is as following: 

In Chapter 1, the main goals of the research are elaborated by first providing a 

basic background into heat transfer and heat exchangers, as well as nanofluids as a 

form of heat transfer improvement method. Once the background is elaborated, it is 

used as a precursor to the problem statement, which is then followed by the objectives 

of the research. The scope of research elaborates on the details that are used in the 

research. Finally, this chapter closes with significance of study and the research 

outline. 

In Chapter 2, the literature review is elaborated. The aim of this chapter is to 

provide a complete background of the elements involved in heat transfer enhancement. 

The first main section focuses on the nanofluids as a heat transfer enhancement 

technique and the various sub-attributes that affect the performance of heat 

transference. The second section focuses on the double pipe heat exchanger and its 

effect on heat transfer enhancement. The third section performs a literature review and 

comparative analysis on different techniques that use both nanofluids and double pipe 

heat exchangers. The chapter closes with a critical analysis of existing research that is 

most recent and focuses on the usage of nanofluids and double pipe heat exchangers. 

In Chapter 3, the research methodology is elaborated. This chapter starts with 

an overview of the research, and its various modules. It also elaborates the 

thermophysical properties of nanofluids as well the boundary conditions that are used 

for simulating the heat exchanger. The sections that follow focus on the simulation 
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process with detailed steps on how the simulation is conducted using the appropriate 

tool. 

In Chapter 4, the results of the simulation are discussed and analyzed. This 

chapter mainly follows the simulation process by numerically simulating the base 

fluid, the nanofluids and then comparing the results with one another and with 

researches that follow a similar research pattern. The chapter concludes by comparing 

the various heat transfer attributes such as Nusselt Number, heat transfer coefficient, 

and friction factor with nanofluid properties such as diameter and volume fraction 

(concentration). 

In Chapter 5, the research is concluded. A reflection of the current objectives 

and how they were achieved is elaborated in the first section. The final section of this 

chapter proposes how future studies can be conducted in order to further the research 

field in both heat exchangers and nanofluids.
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