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ABSTRACT 

 

 

 

 

A new and simple method to develop highly stretchable and resilient hydrogels 

via ultraviolet light-emitting diode (UV LED) photopolymerization was carried out. 

Firstly, a single network (SN) polyacrylamide (PAAm) hydrogel was prepared. The 

SN hydrogel had achieved about > 98 % monomer conversion, 66 to 82 % gel fraction 

and 10.7 ± 0.1 to 4.1 ± 0.01 swelling degree. Differential scanning calorimetry result 

showed the existence of bound and free water in PAAm hydrogel which have 

interrelation with the swelling and tensile properties. Nevertheless, the SN hydrogels 

demonstrated poor tensile properties (tensile strength: ~ 0.06 MPa, Young’s modulus: 

0.26 ± 0.02 MPa, elongation at break: ~ 32 ± 3.4 % and toughness: ~ 1104 ± 90.5 J/m2) 

which severely limit their extensive uses for the advanced functional material. Thus, 

double network (DN) hydrogels were prepared and characterized by adding chitosan 

hyaluronic acid (ChiHA) to PAAm SN hydrogels at concentration ranging from 20-50 

wt%. The optimized DN hydrogel with 30 wt% of ChiHA composition exhibited 

higher monomer conversion (up to 99 %), gel fraction (~ 73 to 98 %) and tensile 

properties (tensile strength: ~ 0.16 MPa, Young’s modulus: ~ 0.47 MPa, elongation at 

break: ~ 49 ± 0.1 % and toughness: ~ 1785 ± 58.4 J/m2). However, the resilience 

property in DN hydrogels was low as indicated by large hysteresis upon loading-

unloading cycle. To overcome this problem, the selected compositions of DN 

hydrogels with 40 and 50 wt% of overall monomer concentration (OMC) were 

modified to produce elastomeric hydrogels (EH). Silicone urethane acrylate (SUA), an 

elastomeric and resilient material, was integrated into DN hydrogels in a “sandwich-

like” form via photopolymerization. EH was successfully polymerized by reaching up 

to 99 % of gel fraction. The peaks from Fourier transform infrared spectra at 1262, 

1096, 1023 and 802 cm−1 were attributed to Si–CH3, Si–O–Si, –C-O and Si-C 

stretching mode for SUA network. EH possessed excellent tensile properties where its 

tensile strength, Young’s modulus, toughness and elongation at break were ~ 2-13 

times larger than SN and DN hydrogels. EH also exhibited a remarkable compressive 

strength (~ 1.5 MPa), exceptional fracture toughness (~ 36851 J/m2) and highly 

resilient (~ 93 %). These exceptional properties were due to the reversible assembly 

of the strong and flexible SUA chain, which could be explained by the dissipation of 

the crack energy along the EH network. The temporarily molecular dissociation in EH 

network which could be instantly reconstructed during unloading process may also be 

responsible. These fascinating properties of the novel EH had offered an alternative 

candidate for biomaterial applications. 
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ABSTRAK 

 

 

 

 

Satu kaedah baharu yang mudah untuk membangunkan hidrogel yang 

mempunyai kebolehregangan dan kebingkasan yang tinggi melalui fotopempolimeran 

diod pemancar cahaya ultraviolet telah dilakukan. Pada permulaannya, hidrogel 

jaringan tunggal (SN) poliakrilamida (PAAm) disediakan. Hidrogel SN mencapai > 

98 % penukaran monomer, pecahan gel 66 hingga 82 % dan darjah pembengkakan 

10.7 ± 0.1 hingga 4.1 ± 0.01. Keputusan kalorimeter imbasan kebezaan (DSC) 

menunjukkan kewujudan air yang terikat dan bebas dalam hidrogel PAAm 

mempunyai hubung kait dengan sifat pembengkakan dan tegangan bagi hidrogel. 

Walau bagaimanapun, hidrogel SN menunjukkan sifat tegangan yang lemah (kekuatan 

tegangan: ~ 0.06 MPa, modulus Young: 0.26 ± 0.02 MPa, pemanjangan pada takat 

putus: ~ 32 ± 3.4 % dan kekukuhan: ~ 1104 ± 90.5 J/m2) sehingga menghadkan 

penggunaannya untuk bahan berfungsi termaju. Oleh itu, hidrogel jaringan berganda 

(DN) disediakan dan dicirikan dengan menambah asid hialuronik kitosan (ChiHA) ke 

dalam hidrogel SN PAAm dengan julat kepekatan 20-50 % berat. Komposisi hidrogel 

DN yang dioptimumkan dengan komposisi ChiHA 30 % berat menunjukkan 

penukaran monomer yang lebih tinggi (sehingga 99 %), pecahan gel (~ 73 hingga 98 

%) dan sifat-sifat tegangan (kekuatan tegangan: ~ 0.16 MPa, modulus Young: ~ 0.47 

MPa, pemanjangan pada takat putus: ~ 49 ± 0.1 % dan kekukuhan: ~ 1785 ± 58.4 

J/m2). Namun, sifat kebingkasan dalam hidrogel DN adalah rendah seperti ditunjukkan 

oleh histerisis yang besar terhadap kitaran peletakan-pelepasan beban. Untuk 

mengatasi masalah ini, komposisi hidrogel DN yang terpilih dengan kepekatan 

monomer keseluruhan 40 dan 50 % berat telah diubahsuai untuk menghasilkan 

hidrogel elastomer (EH). Silikon uretana akrilat (SUA), bahan elastomer dan kenyal, 

telah diintegrasikan ke dalam hidrogel DN berbentuk seperti “sandwich” melalui 

fotopempolimeran. EH berjaya dipempolimerankan dengan mencapai pecahan gel 

sehingga 99 %. Puncak-puncak daripada spektrum inframerah transformasi Fourier 

disifatkan mod regangan Si-CH3, Si-O-Si, -C-O dan Si-C bagi jaringan SUA. EH 

mempunyai ciri-ciri tegangan yang sangat baik dimana kekuatan tegangan, modulus 

Young, kekukuhan dan pemanjangan pada takat putusnya adalah ~ 2-13 kali ganda 

lebih besar berbanding hidrogel SN dan DN. EH juga mempamerkan kekuatan 

mampatan yang luar biasa (~ 1.5 MPa), kekukuhan patah yang hebat (~ 36851 J/m2) 

dan kebingkasan yang tinggi (~ 93 %). Ciri-ciri yang luar biasa ini disebabkan oleh 

rantaian SUA yang kuat dan boleh dilentur, yang boleh dijelaskan oleh lesapan tenaga 

retak di sepanjang jaringan EH. Peleraian molekul sementara dalam jaringan EH yang 

boleh dibina semula dengan serta-merta semasa proses pelepasan beban juga 

bertanggungjawab untuk mendapatkan ciri-ciri ini. Sifat-sifat menarik yang dimiliki 

oleh EH yang novel ini menawarkan sebagai salah satu calon alternatif bagi aplikasi 

biomaterial. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Research Background  

 

 

Three dimensional crosslinked networks of hydrophilic polymer known as 

hydrogels have attractive properties due to their tunable chemical and physical 

performances and inherent resemblances to biological materials. Hydrogels possess a 

great potential of applications ranging from biomedical fields, tissue engineering, 

nano-reactor design and separation systems. In the presence of hydrophilic groups, 

hydrogels tend to swell and retain water in their structure due to the crosslinking 

network1. Also, hydrogels are soft and wet materials owing to high water content with 

their stiffness comparable to body tissues and 10-100 times lower than latex2. 

 

 

In addition, hydrogels that can change their shape and physical properties in 

response to pH, temperature and light are being explored for applications such as 

biosensors, controlled drug delivery and artificial muscle tissues1,3,4. Hydrogels are 

also completely transparent and biocompatible with surrounding biological tissues. 

Thus, hydrogels are safe for human and already established for manufacturing of 

contact lenses, diapers, toothpaste and shower gel5. 

 

 

The conventional hydrogels which are also known as single network (SN) 

hydrogels can either be chemically or physically crosslinked. Polyacrylamide (PAAm) 

hydrogel is one of the most widely explored hydrogels, which is typically synthesized 

by chemically initiated free-radical copolymerization or ultraviolet (UV) initiated of 



2 
  

acrylamide (AAm) in the presence of crosslinker such as N,N’-

methylenebisacrylamide (MBAAm). Hydrogels based on AAm/MBAAm have been 

studied for tissue engineering6, controlled release7, DNA electrophoresis8 and 

microfluidic devices9. They also have sufficient hydrophilicity but low in hydrolytic 

stability and tensile strength10,11. 

 

 

Double network (DN) hydrogels had been proposed as substitutes to improve 

the mechanical properties of the SN hydrogels12–16. Fundamentally, DN hydrogels are 

formed from combination of brittle polyelectrolyte and ductile neutral polymer 

network which contribute to the improvement of tensile strength17,18, compressive 

strength18,19 and toughness12,16,18. The remarkable enhancement in mechanical 

properties of DN hydrogels could be explained by the understanding of their network 

structures. Almost all DN hydrogels are particularly synthesized as covalent-covalent, 

ionic-covalent and physical-physical crosslinked networks. In 2003, Gong and her co-

workers have developed the first covalently linked poly(2-acrylamido-2-

methylpropanesulfonic acid)/polyacrylamide (PAMPS/PAAm) DN hydrogels. The 

PAMPS/PAAm gels exhibited fracture tensile stress of 1-10 MPa, fracture tensile 

strain of 1000-2000 % and fracture toughness of 102-103 J/m20. The ionic-covalently 

crosslinked of Ca2+ alginate/polyacrylamide (Ca2+-Alg/PAAm) DN hydrogel 

exhibited only 0.16  MPa of tensile strength with 74 % of recoverability  due to the 

introduction of reversible noncovalent bonds21. Meanwhile, the physically crosslinked 

of poly(dodecyl glyceryl itaconate)-polyacrylamide (PDGI-PAAm) bilayer exhibited 

excellent flexibility and high toughness22.  

 

 

In addition, the biomedical applications of tough hydrogels demanded them to 

have outstanding deformation recoverability or resilience. For instance, the 

mechanical parts or artificial organs (e.g. artificial muscles) made of hydrogels ought 

to endure repeated deformation for a longer time. Accordingly, Spinks and Wallace 

proposed the fabrication of tough hydrogels on the basis of the DN formulations with 

good  tensile strength (0.7 to 1.3 MPa), Young’s modulus (0.6 to 0.9 MPa), strain at 

break (~ 350 %) and instant recovery (75 to 85 % at first loading cycle)23. Meanwhile, 

polyethylene glycol/polydimethylsiloxane (PEG/PDMS) hydrogel demonstrated 
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resilience over 97 %, fractured toughness 80 J/m2 and measured strain up to 300 %24. 

Progress towards robust hydrogels was further explored by a group of researchers 

which successfully synthesized skin-inspired hydrogel-elastomer hybrids with 

excellent interfacial toughness (> 1000 J/m2) and functional microstructures25. All 

those studies have revealed that the development of elastomeric hydrogels (EH) could 

be a possible approach to enhance the mechanical properties of tough hydrogels 

including resiliency. Meanwhile, difunctional silicone urethane acrylate (SUA) 

oligomer has been identified as a component that possesses elastomeric property and 

is predominant for enhancing the elasticity and resiliency of EH26,27. In addition, the 

excellent flexibility and toughness  of SUA cured film are crucial for development of 

biomaterials requiring high mechanical properties such as cartilage and tissue 

engineering26.  

 

 

Herein, PAAm-chitosan hyaluronic acid (ChiHA) DN hydrogel was selected 

to represent the covalently crosslinked and ionically crosslinked networks. PAAm has 

long chain length, sufficient hydrophilicity and convenient for mechanical 

adjustability. Meanwhile, ChiHA has strong polar and ionic interactions between 

amine and hydroxyl group, responsible for the enhanced mechanical properties due to 

physical crosslinking28. In this study, PAAm-ChiHA/SUA EH was synthesized via 

ultraviolet light-emitting diode (UV LED) photopolymerization. UV LED system 

offers a fast curing rate, low maintenance cost and emits no ozone extraction or 

harmful toxic chemicals29 as compared to conventional UV mercury system. Since 

SUA possesses good photosensitivity and compatibility with the acrylate monomers, 

EH could rapidly photopolymerize under UV photopolymerization26,27. Similar to SN 

and DN hydrogels, EH possesses high water content and has outstanding moisture 

absorbing. EH is also an innovative thin material that is extensively tougher than SN 

hydrogels. Additionally, EH exhibits good recoverability with very minimum 

hysteresis after loading-unloading cycle without permanent damage which can address 

the disadvantages of DN hydrogels. On top of that, EH are potential advanced 

biomaterials which could offer a new vision into the design of the tough and highly 

resilient hydrogels.  
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1.2 Problem Statement 

 

 

Hydrogels are promising biomaterials due to their good compatibility and low 

friction with surroundings biological tissues30–32.However, classical SN gels are 

mechanically weak and notoriously brittle with low stretchability, poor toughness and 

no recoverability16,33,34. They generally fail at a stress less than 1 MPa and strain less 

than 100 %35. SN hydrogels also have low resistance against crack propagation with 

fracture energy within a range of 0.1-10 J/m2 when compared to usual cartilages (~ 

1000 J/m2) and natural rubber (~ 10,000 J/m2)35. The use of SN hydrogels also is 

limited to the applications requiring low mechanical properties only such as water 

absorber and drug delivery devices36.  

 

 

In order to improve the characteristics of SN hydrogels, DN hydrogels which 

composed of stiff and brittle first network as well as soft and ductile second network 

have been introduced14,37,38. DN hydrogels based on PAAm and PAMPS were found 

to have high tensile (~ 2 MPa) and compression strengths (~ 17 MPa)3,39,40. In other 

study, the methacrylated chondroitin sulphate/polyacrylamide (MCS/PAAm) DN 

hydrogel demonstrated remarkably high toughness (~ 1.16 MJ/m3) and fracture 

properties (> 1.5 MPa) as compared to SN hydrogels40. Besides that, DN hydrogels 

are capable to exhibit high mechanical strength and fracture energies due to strain 

energy dissipation of the second network13,16. Even though they have significant 

improvement in toughness as compared to SN hydrogels, yet they suffered a large 

hysteresis13,22,41. This also proved that DN hydrogels are susceptible to the permanent 

damage caused by load-induced scission of the network strands and subsequently 

leading to poor recoverability13,41. Due to these facts, they are still not the best material 

to substitute hydrogel-like bio-tissues such as skin, cartilage, tendon, muscle and blood 

vessel which are commonly highly strong and resilient.  

 

 

To address the above problem, several efforts on designing both tough and 

highly resilient hydrogels have drawn extensive interest among scientists 

recently23,25,42. For instance, it is stated that the hydrogel based elastomer achieved 
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high toughness (~ 1900 J/m2) and extremely high resilient (~ 95 to 98 %) at high strain 

(300 to 400 %)43–45. Thin and tough hydrogel reveals ~ 350 % of extensibilities, 

580−910 kPa of Young’s modulus, 715−1320 kPa of tensile strength and immediate 

recovery up to 75−85 %23. In 2016, a group of researchers proposed a method to 

develop hydrogel-elastomer hybrids with robust interfacial toughness (1000 J/m2)25. 

Therefore, innovation of hydrogels with extraordinary mechanical properties such as 

high stretchability, excellent toughness and super resilient, is crucially important and 

provides a new biomimetic route to engineered hydrogels. 

 

 

Since the study on EH is still limited, a new hydrogel material that possess 

elastomeric properties with additionally high toughness and high resilient was 

developed in this study via UV LED photopolymerization. This hydrogel is devoted 

to PAAm-ChiHA/SUA EH. EH is thin material and extensively tougher than 

conventional SN and DN hydrogels. SUA bilayer was assembled onto PAAm-ChiHA 

hydrogel in “sandwich-like” form to engineer a novel PAAm-ChiHA/SUA EH with 

elevated stretchability, toughness and resiliency. SUA oligomer was selected due to 

its chain flexibility and good compatibility with a number of acrylate monomers26,27. 

Furthermore, SUA which represents as elastomeric part is responsible to improve gel 

flexibility and resiliency of EH. This is primarily ascribed to the huge quantity of 

flexible polysiloxane chains, which were enhanced by the branching degree of SUA 

in EH network. Therefore, this makes them suitable candidates to replace the 

conventional hydrogels and may provide a resourceful platform for developing tough 

and highly resilient hydrogels. 

 

 

 

 

1.3 Objectives of the Study 

 

 

This study revolves on the synthesis and characterization of PAAm-

ChiHA/SUA EH using UV LED curing system. Specifically, the aims were: 

 



6 
  

a) To synthesize various formulations of EH in the form of “sandwich-like” 

between SUA and PAAm-ChiHA DN hydrogel via UV LED photopolymerization. 

b) To optimize the formulations of PAAm SN and PAAm-ChiHA DN hydrogels 

in terms of tensile properties for further developing of PAAm-ChiHA/SUA EH. 

c) To characterize the properties of PAAm-ChiHA/SUA EH in terms of tensile, 

compression, thermal and physicochemical properties. 

 

 

 

 

1.4 Scopes of the Study 

 

 

The first network pre-gel solution was prepared first with 0 to 40 wt% of total 

monomer concentration in this study. Briefly, PAAm SN pre-gel solution consisting 

of main monomer AAm, crosslinker MBAAm and photoinitiator Chivacure 300. In 

the second task, ChiHA pre-gel solution in the range of 0 to 40 wt% was incorporated 

into PAAm SN pre-gel solution to prepare PAAm-ChiHA DN pre-gel solution. Both 

composition of SN and DN hydrogels were optimized from the characterization of 

tensile test, which then were used for synthesizing of EH. 

 

 

At the same time, SUA was dissolved in a mixture of 10 wt% of benzophenone 

and ethanol and stirred until homogenous solution. The SUA solution was poured into 

two different glass moulds and placed in a fume hood for 24 h at room temperature to 

allow the solvent to evaporate. Thereafter, PAAm-ChiHA DN pre-gel solution was 

assembled between bilayers of SUA in the form of “sandwich-like” to prepare PAAm-

ChiHA/SUA EH. For further characterization, the pre-gel solution was cured using 

UV LED photopolymerization. Optimization of formulations has to be achieved in 

order to produce biomaterials based on EH. Properties of EH obtained such as 

extensibility, recoverability, firmness, toughness and swellability were evaluated and 

compared with various polymer materials. 
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The scope of the work also includes characterization of physical and structural 

properties of resulting PAAm-ChiHA/SUA EH. After polymerization, monomer 

conversion, crosslinking percentage and functional groups of EH were characterized 

using total organic carbon (TOC), gel fraction, swelling test and Fourier transform 

Infrared (FTIR), respectively. Besides, the photopolymerized EH was characterized 

by conducting tensile, compression and thermal tests. 
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