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ABSTRACT 

In Malaysia, many existing buildings, particularly old buildings, are not 

designed for credible seismic actions. Most of the residential buildings in Malaysia 

which below 20 stories typically features an open space ground floor and the upper 

floors are featured with infill brick wall, deriving a higher lateral stiffness than the 

ground floor. Consequently, the safety of such buildings could be jeopardised by 

such uncertainties. Therefore, suitable risk management strategies such as fragility 

analysis should be adopted. Hence, there is a need to derive the seismic fragility 

curve for buildings with inadequate lap splice length in Malaysia. In this research, 

the seismic fragility curves for 3-, 6- and 9-story reinforced concrete frame with 

inadequate lap splice length were derived. All structural models were initially 

designed in accordance with the specification of BS 8110. The geometry orientation, 

material properties and reinforced detailing were also in accordance to the common 

practice in the construction industry of Malaysia. All structural models were 

subjected to 15 far-field seismic ground motion records. ETABS v2016 was used to 

carry out the nonlinear time-history analysis and incremental dynamic analysis to 

determine the inter-story drift demand and inter-story drift capacity of all the 

structural models. All structural models were excited by time-history data with 

increasing PGA from 0.05g to 0.50g with an increment of 0.05g. Three levels of 

seismic performance criteria were evaluated, namely immediate occupancy (IO), life 

safety (LS) and collapse prevention (CP) to assess the structural performance. 

Seismic fragility curves were plotted for all structural models. The results reveal that 

the nature of damage state of all structural models depends largely on the seismic 

wave frequency that resonate the natural frequency of the structural models. In 

general, the higher the building height, the lower the probability of damage 

exceedance induced onto the structural models. The results also show that the 

absence of adequate lap splice length at the both end of columns at first story could 

significantly increase the probability of damage exceedance for all seismic 

performance criteria in all structural models.  
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ABSTRAK 

Di Malaysia, kebanyakan bangunan lama adalah tidak direka untuk menahan 

pengaruh pergerakan tanah seismik. Kebanyakan bangunan kediaman di Malaysia 

yang kurang daripada 20 tingkat lazimnya mempunyai ruang terbuka di tingkat 

bawah dan tingkat atas dilengkapi dengan dinding batu bata. Keadaan ini telah 

menghasilkan kekakuan lateral tingkat atas lebih tinggi daripada tingkat bawah. 

Akibatnya, keadaan ketidakpastian ini telah mengacamkan keselamatan bangunan-

bangunan tersebut. Oleh itu, analisis kerapuhan perlu dijalankan untuk membentuk 

strategi pengurusan risiko yang sesuai. Justeru, hasilan lengkung kerapuhan seismik 

untuk bangunan yang diperkuat dengan pengukuhan tetuli yang tidak mencukupi 

adalah diperlukan di Malaysia. Dalam kajian ini, lengkung kerapuhan seismik telah 

dihasilkan untuk bingkai konkrit bertulang yang terdiri daripada 3-, 6- dan 9-tingkat, 

yang diperkuat dengan pengukuhan tetuli yang tidak mencukupi. Semua model 

struktur ini telah direka mengikuti spesifikasi kod BS 8110. Orientasi geometri, sifat 

bahan dan perincian bertetulang bingkai-bingkai tersebut juga telah direka dengan 

amalan umum dalam industri pembinaan Malaysia. Semua model struktur telah 

dikenakan 15 rekod pergerakan tanah seismik jarak jauh. ETABS v2016 telah 

digunakan untuk menjalankan analisis sejarah masa tidak linear dan analisa dinamik 

tokokan untuk menentukan permintaan drift antara tingkat dan kapasiti drift antara 

tingkat bagi semua model struktur. Semua model struktur teruja dengan data sejarah 

masa dengan peningkatan PGA dari 0.05g hingga 0.50g dengan setiap kenaikan 

0.05g. Tiga tahap kriteria prestasi seismik telah dinilaikan, iaitu penghunian segera 

(IO), keselamatan nyawa (LS) dan pencegahan runtuhan (CP) untuk menilai prestasi 

struktur. Lengkung kerapuhan seismik telah dibentukkan untuk semua model 

struktur. Keputusan kajian ini menunjukkan bahawa keadaan kerosakan bagi semua 

model struktur bergantung adalah bergantung pada kekerapan gelombang seismik 

yang bergema pada kekerapan asli model struktur. Secara umumnya, apabila 

ketinggian bangunan meningkat, kebarangkalian kerosakan terhadap model struktur 

adalah lebih rendah. Keputusan analisis juga menunjukkan bahawa ketiadaan 

pengukuhan tetuli yang mencukupi pada akhiran tiang tingkat pertama akan 

meningkatkan kebarangkalian kerosakan terhadap semua model struktur dalam 

kriteria prestasi seismik masing-masing.   
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Research Background 

Earthquake poses devastating effect which can cause catastrophic damage to 

the building structures, especially the buildings which possessing soft-story feature. 

Most of the residential buildings in Malaysia which below 20 stories typically 

features an open space ground floor to allow flexible use of space. In contrast, non-

structural infill brick walls are commonly featured at the upper floors, deriving a 

higher lateral stiffness than the ground floor. In seismic event, the ground floor of 

soft-story building is expected to displace greatly while the superstructure remains as 

rigid block relatively to the horizontal motion. Therefore, the seismic performance of 

soft-story building depends immensely on the performance of the columns 

supporting the superstructure. 

Most of the residential soft-story buildings in Malaysia are comparatively old 

and were constructed before the first Malaysia Seismic Standard (MS EN 1998-1: 

2015) and Malaysia National Annex to Eurocode 8 (MS EN 1998-1: 2017) were 

introduced in year 2015 and year 2017 respectively. Moreover, most of the buildings 

in Malaysia prior to year 2015 were designed according to British Standard (BS 

8110-1: 1997). Based on the design philosophy of British Standard, seismic 

provision and ductile design are not included in the building design prior to year 

2015. Therefore, the columns in the residential soft-story building are expected to be 

poorly-confined, lightly-reinforced and inadequate lap-spliced length provided. In 

addition, the spacing of the shear reinforcement in these columns could be minimal 

according to BS 8110 provision. According to ASCE 41 (2017), these columns could 

be classified as flexural and shear critical and deemed unsafe. 
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Fragility functions can be used to denote the vulnerable condition of a 

structure and provide the probability of exceeding limit states of damage for a broad 

range of peak ground acceleration. The risk of building structures from potential 

earthquakes and the losses of economical revenue can be forecasted by seismic 

fragility curves. Government agencies often refers to seismic fragility curve for 

disaster planning, while insurance companies adopt seismic fragility curve to predict 

the overall expenditure after post-earthquake event. In the recent practice, bank also 

started to refer seismic fragility curve for asset management. 

Most of the buildings in Malaysia which built before seismic code, have an 

inherent lateral strength resistance to lateral load such as notional load and wind 

load, can provide certain degree of safety factor to seismic event. However, the 

damage intensity of those buildings under seismic event is remain unknown until 

further assessment. This is because the damage level of the building under seismic 

event is greatly dependent on the importance of the building, functional use of 

building and specific requirements of the owner. Due to the complexity of seismic 

performance investigation on new building structure, seismic fragility study herein to 

provide the vulnerability conditions of generic types of building construction. 

Simplified structural models with different properties can be adopted to study the 

uncertainties in structural parameters for all representative building types. By 

adopting this concept, seismic fragility analysis of low-ductile reinforced concrete 

frame with inadequate lap splice length at different building height, under different 

seismic sources, can be investigated effectively. 

According to European Commission Syner-G Reference Report 4 (2013), 

there are four different methods to derive seismic fragility function, namely: i) 

empirical methods; ii) analytical methods; iii) expert judgement; and iv) hybrid 

methods. The availability of structural damage data after post-earthquake event or 

analytical simulation is one of the main precedents for the selection of fragility 

function (Kwon and Elnashai, 2006). Analytical method, expert judgement or the 

combination of both methods are commonly used to produce the seismic fragility 

curve of structural frame system and the assessment of potential economy losses of 

post-earthquake event. 
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Seismic fragility function for reinforced concrete with low-ductile frame with 

inadequate column lap splice length which the initial provision is in accordance to 

BS 8110 can be established to evaluate the vulnerability of the structure. Therefore, 

this research is important for the vulnerability assessment of buildings under seismic 

ground motion to predict the potential damage and economy loss after seismic event. 

1.2 Problem Statement 

Earthquake is destructive natural phenomena that seismic waves along the 

direction of propagation are responsible for the transmission of the destructive 

energy as it can propagates via solid state and liquid state. However, beyond the 

tremendous destruction of life that earthquake caused, it also caused massive 

physical damage to building structure type which more susceptible to seismic 

induced damage. In Malaysia, most of the buildings are not designed to resist seismic 

loading because almost all buildings are not mandatory to design to resist earthquake. 

Based on the Malaysia National to Eurocode 8 (MS EN 1998-1: 2017), the seismic 

hazard map shows that Malaysia is in the range of low to moderate seismicity. 

Therefore, seismic detailing in building is vital, especially for buildings built at 

moderate seismicity zone.  

During the 2015 Sabah Earthquake, the aforementioned concerns on the 

building type with soft-story effect was damaged (Majid et al., 2017). According to 

the field survey reported by Majid et al. (2017), lack of confinement reinforcement, 

buckling of longitudinal reinforcement and crushing of concrete core were the main 

reasons which caused the damage to the soft-story building. The adequacy of lap 

splice length, especially in the column is important in seismic design to provide 

sufficient column flexural and shear capacity against lateral seismic loading.  

To date, the seismic fragility curves for Malaysia buildings are limited. 

Furthermore, there is still no seismic fragility curve developed for low-ductile 

reinforced concrete frame with partial infilled wall that considering the columns are 

reinforced with inadequate lap splice length. According to ASCE 41 (2017), column 
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with inadequate lap splice length can significantly lower the deformation capacity 

and thus the probability of damage to the low ductile reinforced concrete frame can 

be increased. On top of that, there is also limited study on the inter-story drift of low-

ductile reinforced concrete frame, considering inadequate lap-splice length in 

Malaysia. Hence, a comprehensive study of seismic fragility analysis on low-ductile 

reinforced concrete frame with inadequate lap splice length should be carried out and 

explored promptly. 

1.3 Research Objectives 

The objectives of this research are listed below: 

1. To determine the inter-story drift capacity of low-ductile reinforced concrete 

frame with inadequate lap splice length. 

2. To estimate the inter-story drift demand of low-ductile reinforced concrete 

frame with inadequate lap splice length. 

3. To derive seismic fragility curves for low-ductile reinforced concrete frame 

with inadequate lap splice length. 

4. To estimate the probability of seismic induced damage to low-ductile 

reinforced concrete frame with inadequate lap splice length. 

1.4 Scope of Work 

This project focuses on the numerical simulation of soft-story building 

structure with low-ductile partially reinforced concrete frame with the height of 10m, 

19m and 28m, which represent building with three-, six- and nine- stories 

respectively. All buildings are assumed to be regular in both plan and elevation 

configuration. 15 time-history data from different sources of far-field earthquake are 

adopted in the numerical analysis to perform Incremental Dynamic Analysis (IDA). 

The building structures are well designed and detailed according to BS 8110 – 1: 
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1997 code specification. All material properties and design loadings are in 

compliance with BS 8110, BS 6399 and common industrial practices in Malaysia. 

The preliminary design of the 3 models is performed by using ETABS v2016 finite 

element software. All the columns in the low-ductile reinforced concrete frame in 

each building type are detailed with inadequate lap splice length. The material 

properties such as concrete compressive strength, reinforcement yield stress and 

ultimate stress of reinforcement are 20 N/mm
2
, 300 N/mm

2
 and 420 N/mm

2
 

respectively. The applied superimposed dead load (comprise of floor finishes, self-

weight of slab and mechanical services) at all floors and at top floor (without brick 

walls) on the concrete floor frame are 24.4 kN/m and 15.4 kN/m respectively. The 

applied live load at all floors and at top floor on concrete floor frame are 3 kN/m and 

2 kN/m respectively. 

1.5 Significant of Study 

While many researchers have studied seismic fragility curves of reinforced 

concrete frame, the information on the reinforced concrete frame detailed with 

inadequate column lap splice length are still lacking. To date, guidelines are provided 

by current structural design codes for lateral loads especially notional loads and wind 

loads on typical building design. The establishment of national annex to Eurocode 8 

will introduce additional column lap splice length to the current structural design 

practice in Malaysia. The introduction of seismic fragility curves of low-ductile 

reinforced concrete frame with inadequate lap splice length can later serves to 

evaluate the structural performance of existing typical residential buildings in 

Malaysia. This research will enhance the understanding of the impact of earthquake 

on existing buildings in Malaysia, as well as contribute to the local authority and 

development of design guideline in Malaysia for earthquake resistance building 

structures. 
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