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ABSTRACT 

    Shear failure in beams is characterised by diagonal cracks in the shear span 

or near support. Consequently, any form of well anchored bar placed to cross these 

cracks will be able to carry shear to some extent. This project report presents the 

results of a study in which the development and application of various types of shear 

reinforcement for the design of reinforced concrete beams were reviewed and 

discussed. The structural concept of these reinforcement and the behaviour of beams 

containing them were investigated and compared. The results indicate that the 

conventional vertical links is still the sole type of shear reinforcement preferred and 

applied by designers is almost all construction works. Although the bent-up bars had 

been used before, it has not been adopted since the last fifty years or so. This perhaps 

due to the unavailability of sufficient number of mid-span reinforcement to be 

extended and bent-up near the support. Alternative systems of shear reinforcement 

have also been tested namely the independent bent-up bars which configuration has 

later been improved and renamed the welded inclined bars, inclined links, 

independent horizontal bars and the swimmer bars. Of these the welded inclined bars 

proved to have relatively good shear resistance. Furthermore, since it is in the form 

of vertical longitudinal sheets tied to the top and bottom reinforcement, installation in 

beams is more practical.  
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ABSTRAK 

Kegagalan ricih dalam rasuk bercirikan keretekan pepenjuru didalam rentang 

ricih atau berdekatan dengan penyokong. Dengan itu sebarang bentuk bar dengan 

tambatan yang mencukupi yang disusun untuk merentasi keretakan tersebut akan 

berupaya menanggung ricih ke tahap tertentu. Laporan projek ini memaparkan 

keputusan satu kajian dalam mana perkembangan dan penggunaan berbagai jenis 

tetulang ricih dalam rekabentuk rasuk konkrit tetulang dikaji dan dibincangkan. 

Konsep struktur tetulang ini dan gayalaku rasuk rasuk terbabit dikaji dan 

dibandingkan. Keputusan menunjukkan bahawa perangkai pugak konvensional 

masih menjadi pilihan unggul sebagai tetulang ricih oleh perekabentuk dalam 

hamper semua kerja pembinaan. Walau pun bar condong digunakan dengan meluas 

sebelum ini, ia tidak lagi dipilih sejak sekitar lima puluh tahun yang lalu. Ini 

barangkali berpunca dari kesukaran mendapatkan bilangan bar yang mencukupi 

untuk dipanjangkan dan dibengkokkan dekat penyokong. Sistem tetulang ricih 

alternative telah juga diuji sepeti bar condong bebas yang mana konfigarasinya 

kemudian di perkemaskan dan dinamakan semula sebagai bar condong berkimpal, 

perangkai condong, bar ufuk tambahan dan bar perenang. Daripada semua ini ar 

condong berkimpal terbukti mempunyai rintangan ricih yang baik. Disamping itu, 

oleh kerana ia merupakan kepingan memanjang pugak yang diikat pada tetulang atas 

dan bawah, pemasangan dalam rasuk adalah lebih praktikal. 
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CHAPTER 1  

 

 

 

INTRODUCTION 

1.1 Background of Study 

Beams made up of plain concrete are incompetent as flexural member since 

the concrete is weak in tension and exhibits very small percentage of its compressive 

strength due which such type of beams are capable of carrying low loads in tension 

region and fails before the fully utilization of concrete strength in compression 

region. Steel bars are incorporated into tension side of beam for this reason and the 

stresses induced by bending moments is primarily resisted by streel reinforcement 

where in the compression zone concrete alone is usually able to withstand.  

The shear forces induced by the loads are usually be larger in beams towards 

the support regions. Cyclic loading on a beam is a continuous and repetitive load that 

lead to instable stresses, forces, strains, and tensions. These repeated cyclic loads 

generate through different mechanisms and expose the member to shear mode of 

failure. For structural members, brittle type of shear failure is considered to be high 

risk type of failure which can lead to collapse of structure. To avoid this kind of 

failure the design of beams should be adequate such that they will behave ductile in 

flexural failure rather than shear (Toniolo G, 2017) . 

Some of the main reasons of shear failure in beam are inadequate shear 

reinforcement on the support, change in loading mechanism on the structure, 

inadequate provision of end anchorage and poor construction. To some extent, any 

form of reinforcement designed to cross these cracks will be able to withstand the 

shear stress. The styles of shear reinforcing that have been identified are vertical 

links, bent-up bars and horizontal bars are also capable of resisting shear. While the 

bent-up bars are effective at reducing the width of the crack and able to carry larger 
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shear forces, the links help the longitudinal tension steel sustain dowel action and 

support the concrete in compression containment.  

The combination of vertical links and bent-up bars could lead to an economic 

solution from overall considerations. However, for the past four decades or so, the 

developers have not favoured bent-up bars. Shear forces are only resisted by vertical 

links in almost all design and construction situations, resulting in the use of very 

closely spaced links. Nonetheless, possible diagonal cracking of all but very lightly 

loaded or minimal beams may need reinforcement.  

Various researches have been carried out to study the parameters that effect 

shear strength of beam such as size of beam, strength of concrete, shear span to depth 

ratio, effective beam length and transverse reinforcement (Mansour, Dicleli, Lee, & 

Zhang, 2004). Swimmer bars have been investigated for effectiveness and were 

found effective. (Al-Nasra, 2013), (H. A. Mohamed, 2017). Welded inclined bars are 

another form of  shear reinforcement which have been investigated several times and 

reported as more effective as compared to vertical links (Galip, Noor Mohamed, & 

Abdullah, 2018).  

The previous study shows that researchers are more interested in exploring 

the study of new methods and techniques that are effective to shear capacity of beam. 

In our study we will study the shear reinforcement techniques which are most 

effective to shear forces in beams. 

1.2 Problem Statement 

Bottom reinforcement of beam was also used to resist shear forces by 

bending them within the shear span known as bent up bars. Use of bent bars in 

reinforced concrete beams becomes limited in the case when there is less amount of 

tension reinforcement is required and complexities in the installing of multiple bent 

up bars with the high cost of laboring does not make this method economical. 
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So far stirrups are the most common method used in beams against shear 

forces. Construction industry prefers use of stirrups because these are easy to 

manufacture and fix which makes them economical also.  

However, in the case of high magnitude of shear forces the use of close 

spaced stirrups make congestion in shear span of beam due to the high amount of 

shear reinforcement. This situation makes the difficulties in installation and increase 

the amount of cost (H. A. Mohamed, 2017). 

1.3 Objectives of the study 

In general, this study was carried out to explore the shear behavior of 

rectangular reinforced concrete beams with different modified systems being used in 

researches in the shear span. More specific in term the objectives of the study are:  

a) To summarize the modified systems used in beams as shear reinforcement. 

b) To identify the most effective method among modified systems. 

c) To evaluate effect of amount in the shear reinforcement.  

1.4 Scope of the study 

This project is entirely focused on the theoretical investigation in the 

following scope: 

a) The review of shear reinforcement system was based on their shear capacity, 

deflection and failure mode. 
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b) Comparison of modified shear reinforcement systems was based on their 

practical applicability in construction industry considering the factors cost, 

time, difficulties in manufacturing and fixing onsite. 

c) The recent developments in shear reinforcements was assessed based on their 

effectiveness.  

1.5 Significance of the study 

Shear failure is considered to be very critical due to its unpredictable nature 

in failure when loads exceeds the maximum capacity of beams. Use of stirrups is the 

conventional method as shear reinforcement in beams but in case of higher shear 

force the quantity of reinforcement becomes larger.  

The provision of shear reinforcement in large amount creates congestion on 

the other hand increasing the labor cost, quantity and time. Researchers are looking 

in to resolve this problem investigating experimentally by using different methods as 

shear reinforcement. 

This review study will enable us to give insight on different shear 

reinforcement systems being used in research to identify the possibility of 

implementing alternative method against conventional method of stirrups. 
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APPENDICES 

 

Appendix A 

 

Test Results for Welded Inclined Bars 

Reference 

B
e
a

m
  

S
a

m
p

le
 

Nominal 

Links  

Shear Reinforcement 

U
lt

im
a

te
 L

o
a

d
 

(k
N

) 

S
h

e
a

r
 F

a
il

u
r
e
 

lo
a

d
 (

k
N

) 

D
e
fl

e
c
ti

o
n

  

(m
m

) 

Failure 

Mode 
Vertical 

Links 

Welded  

Inclined Bars 

(WIB) 

(Saleh Baras, 

2013) 

B1 

R6 – 150 

R6 - 50 - 220 110 14.77 Shear 

B4 - H10 - 150 @ 45˚ 230 115 21.71 Flexure 

B5 R6 - 50 H10 - 150 240 120 9.9 Flexure 

B6 - H10 - 150 @ 30˚ 240 120 10.22 Shear 

        

(Mian, 2016) 

B 1 

R6 – 150 

R6 - 65 - 208 104 14.32 Shear 

B 2 - H16 - 200 @ 60˚ 260 130 14.92 Flexure 

B 3 - H16 - 200 @ 45˚ 245 122.5 15.34 Flexure 

B 4 - H10 - 150 @ 45˚ 245 122.5 14.48 Flexure 

B 5 R6 - 150 H16 - 200 @ 45˚ 300 150 11.56 Flexure 

B 6 - H16 -200 @ 45˚ 240 120 9.46 Shear 

        

(Gimbiya, 

2017) 

BM 1 

R6 – 100  

R6 - 50 - 221 120 14.34 Shear 

BM 2 - H16 - 200 @ 45˚ 272 190 16.67 Flexure 

BM 3 - H16 - 200 @ 60˚ 290 185 17.24 Flexure 

BM 4 - H16 - 125 @ 45˚ 270 190 17.29 Flexure 

BM 5 - H16 - 125 @ 60˚ 271 190 21.39 Flexure 

        

(Galip et al., 

2018) 

B 1 

R6 - 150 

- - 105.50 52.75 4.80 Shear 

B 2 2R6 - 70 - 313.10 156.55 22.98 Flexure 

B 3 - R8 - 150 @ 60˚ 260.60 130.33 12.78 Shear 

B 4 - R8 - 100 @ 60˚ 303.60 151.33 16.84 Shear 

B 5 - H8 - 120 @ 60˚ 321.10 160.55 19.41 Flexure 
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Test Results for Swimmer Bars 

Reference 

B
e
a

m
  

S
a

m
p

le
 

Nominal 

Links  

Shear Reinforcement 

S
h

e
a

r
 F

a
il

u
r
e
 

lo
a

d
 (

k
N

) 

D
e
fl

e
c
ti

o
n

  

(m
m

) 

Failure 

Mode 
Vertical 

Links 
Swimmer Bars 

(Moayyad 

M. Al-

Nasra, 

2013) 

BC 

ф8 - 600 

ф8 - 600 - 180 11 Shear 

BW - Two swimmers welded ф10 - 275 220 14.2 Shear 

BB - Two swimmers Bolted ф10 - 275 215 13.8 Shear 

BU - Two simmers U-Link ф10 - 275 210 13 Shear 

       

(Al-Nasra, 

2013) 

B1 

- 

ф8 - 550 - 260 11.8 Shear 

B2 - Single swimmer ф14 - 137.5 310 12.3 Shear 

B3 - Single swimmer ф12 - 137.5 305 12 Shear 

B4 - Single swimmer ф10 - 137.5 285 14.9 Shear 

B5 - Two swimmers with cross ф8 - 175 240 9.7 Shear 

B6 - Two swimmer ф8 - 275 220 9.8 Shear 

      

(Sreejith, 

2017) 

BNS-8-300 

- 

ф8 - 300 - 148 7.92 Shear 

BNS-8-250 ф8 - 250 - 201 8.91 Shear 

BNS-8-200 ф8 - 200 - 204 8.89 Shear 

BSW-8-300  Single swimmer ф8 - 300 246 
10.3

2 
Shear 

BSW-8-250  Single swimmer ф8 - 250 272 9.53 Shear 

BSW-8-200  Single swimmer ф8 - 200 283 
10.7

1 
Shear 

      

 

Note:  

BNS – Beam with normal stirrups 

BSW – Beam with single swimmer bar    
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Test results for shear capacity 

Shear Reinforcement Method Shear Capacity Country Reference 

1. Welded swimmer bars 

2. Bolted swimmers bars 

3. U-link bolted swimmer bars 

All exhibits similar 

results 

West 

Virginia 

(Moayyad M. Al-

Nasra, 2013) 

1. Continuous rectangular spiral      

    reinforcement 

2. Advanced spirals and shear-      

    favourably inclined vertical links 

1. less effective 

2. Improved capacity 
Greece 

(Karayannis & 

Chalioris, 2013) 

1. Single swimmer bar 

2. Rectangular swimmer bar 

3. Rectangular swimmer bar with 

cross bracing 

1. Increased 

2. Not effective 

3. Not effective 

West 

Virginia 
(Al-Nasra, 2013) 

1. basic lattice type  90˚ angle  

2. Parallelogram  45˚ angle  

Each shape exhibits 

similar results (4 to 12%) 

A
C

I 
st

ru
ct

u
ra

l 

jo
u

rn
al

 

(D. J. Kim et al., 

2014) 
1. AFRP 

2. GFRP 

3. CFRP 

Shear reinforcement was 

same so only CFRP 

showed larger strength 

1. Inclined link 

2. Inclined link with additional bar 

1. Significant increase 

(18 to 33%) 
Malaysia (Suhaimi, 2015) 

GFRP basic lattice type  90˚ angle  Improved 
Republic 

of Korea 

(H. Kim et al., 

2015) 

1. Swimmer bar as shape 1 

2. Swimmer bar as shape 2 

1. Increased capacity 

about 58.1% 
Egypt 

(H. A. Mohamed, 

2017) 

Spiral reinforcement Improved Jordan 
(Shatarat et al., 

2016) 

Single Swimmer bars 
Capacity increase by 

35.81% 
India (Sreejith, 2017) 

1. Wound FRP stirrups with 3 layers 

2. Wound FRP stirrups with 3 layers 
1. increased by 208% U. K 

(Spadea et al., 

2017) 

Welded Inclined Bars  60˚  Found effective Malaysia (Galip et al., 2018) 

Inclined links  45˚  
20% increased shear 

capacity 
Malaysia 

(Fazlin & 

Mohamed, 2018) 

1. Inclined Stirrups  45˚  

2. Truss type stirrups 

3. Bracing type stirrups 

All methods were found 

effective 
India 

(Deepthi et al., 

2019) 

CFRP Strips Large improvement Jordan 
(Amaireh et al., 

2020) 
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Test results for deflection 

Shear Reinforcement Method Deflection Country Reference 

1. Welded swimmer bars 

2. Bolted swimmers bars 

3. U-link bolted swimmer bars 

No major difference 

between new systems 

West 

Virginia 

(Moayyad M. Al-

Nasra, 2013) 

1. Continuous rectangular spiral      

    reinforcement 

2. advanced spirals and shear- 

    favourably inclined vertical links 

2. Improved post-peak 

deformation 
Greece 

(Karayannis & 

Chalioris, 2013) 

1. Single swimmer bar 

2. Rectangular swimmer bar 

3. Rectangular swimmer bar with  

    cross bracing 

1. Improved 
West 

Virginia 
(Al-Nasra, 2013) 

1. basic lattice type  90˚ angle  

2. Parallelogram  45˚ angle  
Not studied however 

recorded but not discussed 

A
C

I 
st

ru
ct

u
ra

l 

jo
u
rn
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(D. J. Kim et al., 

2014) 
1. AFRP 

2. GFRP 

3. CFRP 

1. Inclined link 

2. Inclined link with additional bar 
- Malaysia (Suhaimi, 2015) 

GFRP basic lattice type  90˚ angle  Improved 
Republic 

of Korea 
(H. Kim et al., 2015) 

1. Swimmer bar as shape 1 

2. Swimmer bar as shape 2 

decreased by 38.4% as 

compared to shape 2 
Egypt 

(H. A. Mohamed, 

2017) 

Spiral reinforcement Improved Jordan 
(Shatarat et al., 

2016) 

Single Swimmer bars Improved India (Sreejith, 2017) 

1. Wound FRP stirrups with 3 layers 

2. Wound FRP stirrups with 3 layers 
Improved U. K (Spadea et al., 2017) 

Welded Inclined Bars  60˚  Offered less deflection Malaysia (Galip et al., 2018) 

Inclined links  45˚  
less deflection compared to 

control beam 
Malaysia 

(Fazlin & Mohamed, 

2018) 

1. Inclined Stirrups  45˚  

2. Truss type stirrups 

3. Bracing type stirrups 

All types offered less 

deflection to conventional 

method 

India (Deepthi et al., 2019) 

CFRP Strips 
Increased ultimate 

deflection 
Jordan 

(Amaireh et al., 

2020) 
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Test results for failure mode 

Shear Reinforcement Method Failure mode Country Reference 

1. Welded swimmer bars 

2. Bolted swimmers bars 

3. U-link bolted swimmer bars 

Shear 
West 

Virginia 

(Moayyad M. Al-

Nasra, 2013) 

1. Continuous rectangular spiral 

reinforcement 

2. Advanced spirals and shear- 

favourably inclined vertical links 

Shear Greece 
(Karayannis & 

Chalioris, 2013) 

1. Single swimmer bar 

2. Rectangular swimmer bar 

3. Rectangular swimmer bar with 

cross bracing 

Shear 
West 

Virginia 
(Al-Nasra, 2013) 

1. basic lattice type  90˚ angle  

2. Parallelogram  45˚ angle  

Shear compression 

A
C

I 
st

ru
ct

u
ra

l 

jo
u
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(D. J. Kim et al., 

2014) 
1. AFRP 

2. GFRP 

3. CFRP 

1. Inclined link 

2. Inclined link with additional bar 
Shear Malaysia (Suhaimi, 2015) 

1. GFRP basic lattice type  90˚ angle  Shear 
Republic 

of Korea 

(H. Kim et al., 

2015) 

1. Swimmer bar as shape 1 

2. Swimmer bar as shape 2 

Some failed in shear and 

some in flexural 
Egypt 

(H. A. Mohamed, 

2017) 

Spiral reinforcement shear Jordan 
(Shatarat et al., 

2016) 

Single Swimmer bars shear India (Sreejith, 2017) 

1. Wound FRP stirrups with 3 layers 

2. Wound FRP stirrups with 3 layers 

1. Shear tension 

2. Flexural 
U. K 

(Spadea et al., 

2017) 

Welded Inclined Bars  60˚  
All failed in shear only 2 

failed in flexure 
Malaysia 

(Galip et al., 

2018) 

Inclined links  45˚  Shear compression Malaysia 
(Fazlin & 

Mohamed, 2018) 

1. Inclined Stirrups  45˚  

2. Truss type stirrups 

3. Bracing type stirrups 

Shear India 
(Deepthi et al., 

2019) 

CFRP Strips Shear Jordan 
(Amaireh et al., 

2020) 

 




