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ABSTRACT 

Malaysia is located in low to moderate seismicity region in terms of earthquake 
events and mostly engineers design the structures under the gravity and wind loads 
and for the most part they don’t consider the codes requirements for the seismic loads. 
In this study the seismic performance of tall concrete wall buildings under the near 
field earthquake considering inadequate lap splice length effects has been discussed. 
In this study two RC buildings (A & B) having same height and plan but different in 
configuration are selected. Each building has 25 stories with story height of 3.2 m. The 
first 5 storeys of the building A and the first 3 storeys of building B have been 
considered as parking areas. The structural system of the parking levels for both 
buildings consists of columns and beams while the structural system of the upper levels 
vary and contain only flat slab and shear walls without columns. Using ETABS 
software the failure mechanism, Inter-Storey drift demands as well as drift capacities 
of the two reference buildings have been obtained under a set of fifteen Near-Field 
earthquake records from the process of Incremental Dynamic Analysis (IDA). Four 
fragility curves have been generated for four 2D frames which were extracted from 
main 3D models. Eventually, it has been concluded from the fragility curves that 
inadequate lap splice compared with sufficient condition imposes considerable effects 
on seismic behaviour of the structures, which by reducing the ductility make the 
structures less resisting and prone to premature failure against earthquake excitations 
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ABSTRAK 

 Malaysia terletak di kawasan seismik berintensiti rendah hingga sederhana 
dan secara amnya jurutera merekabentuk struktur di bawah beban graviti dan angin 
dan mereka tidak mempertimbangkan syarat kod untuk beban seismik. Dalam kajian 
ini, prestasi bangunan tembok konkrit tinggi telah dibincangkan yang mengalami 
gempa bumi tempatan dengan mengambil kira kesan panjang sambungan yang tidak 
mencukupi. Dalam kajian ini dua bangunan RC (A & B) yang mempunyai ketinggian 
dan pelan yang sama tetapi berbeza dalam konfigurasi telah dipilih. Setiap bangunan 
mempunyai 25 tingkat dengan ketinggian antara lantai sebanyak 3.2 m. 5 tingkat 
pertama bangunan A dan 3 tingkat pertama bangunan B telah dianggap sebagai 
kawasan parkir. Tempat letak kereta untuk kedua-dua bangunan terdiri daripada tiang 
dan rasuk sementara tingkat atasnya berbeza-beza dan hanya mengandungi papak rata 
dan dinding ricih. Dengan menggunakan ETABS mekanisme kegagalan, permintaan 
anjakan antara lantai dan juga kapasiti anjakan dari dua bangunan rujukan telah 
diperoleh menggunakan lima belas rekod gempa tempatan  menggunakan IDA. Empat 
lekukan kerapuhan telah dihasilkan untuk empat bingkai 2D yang diekstrak dari model 
3D utama. Akhirnya, dapat disimpulkan dari lekukan kerapuhan bahawa panjang 
sambungan yang tidak mencukupi memberikan kesan yang besar terhadap tingkah 
laku gempa struktur, yang dengan mengurangkan kemuluran menjadikan struktur 
kurang tahan dan rentan terhadap kegagalan pramatang terhadap gempa. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Problem Background 

The countries which are located in the Southeast Asia, have had a fast growth 

in terms of economic viewpoints in recent span of time. As the regions in the Southeast 

Asia which fall in the low to moderate seismic zones have not been struck by disaster 

caused by earthquake excitations, hence for the design of the structures within these 

regions the effects of seismic forces have not been taken into account (Shoushtari, 

Adnan, and Zare 2016) . Construction of reinforced concrete buildings in Malaysia is 

widely common and since this country lies in Southeast Asia hence, mostly engineers 

in the design process do not include seismic forces. Therefore, it is significant to carry 

out an assessment of structures in order to estimate potential losses which can be 

induced by earthquake excitations. 

From the view point of seismicity, the earth is categorized into high, moderate 

and low seismic regions. As stated above the researches show that Malaysia lies in the 

stable zone with regard to earthquake events. However this statement is overruled due 

to happening of earthquakes especially in east Malaysia. The seismic sources in 

Malaysia are characterized by near-field due to local events and far-field due to 

earthquake waves come from Sumatra (Balendra and Li 2008). In 2015 an earthquake 

with a magnitude 6.0 in scale of Richter which was counted as the most powerful 

earthquake striking Malaysia since 1976 occurred in Sabah, Ranu. Happening of recent 

earthquake in east Malaysia in fact classified the country into low to moderate 

seismicity regions and created the idea of considering the impact of earthquake 

loadings in the design codes for the future (Moffed and Mohamed 2019). 

. 
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 As Malaysia rapidly moving in the path of modernization and development, 

the construction of tall buildings is also increasing. Damages to tall buildings can cause 

substantial economic effects and endanger human’s life. Hence, for the purposes of 

mitigating such damages there are loss models which are utilized to predict the 

potential damages caused by earthquakes. Among the loss models, fragility curves are 

quite essential means for evaluation of performance and vulnerability of structures 

against various levels of seismic events. In fact, fragility curves are statistical tools 

which under the ground shaking shows the likelihood of a structure exceeding or 

reaching certain damage level 

1.2 Problem Statement 

As stated previously Malaysia is assumed to be in the safe zone with respect to 

earthquake events therefore, for the most part designers do not consider the effects of 

earthquake when designing buildings(Abas 2001). Despite being in a stable zone the 

2015 earthquake which struck Ranu at east of Malaysia caused damages to all those 

buildings were designed only under the gravity and wind loads. 

After the inspections and investigations of damaged buildings, it was revealed 

that there had been many reasons behind the scenario like lack of skilled workers 

during construction stages, poor engineering design, nonexistence of enough steel 

bars, poor detailing of bars and improper usage of materials. Therefore, knowing these 

points opened the way for engineers and researchers to adopt stricter measures for 

considering the natural hazards that have a huge impact on buildings in the future. 

Using fragility relations can help engineers to assess the effects of earthquake 

on buildings and enables them to have an estimation of damages as well as reduce risks 

due to earthquakes in future. For an existing building the risk can be mitigated by 

considering some approaches like reinforcement jacketing, FRP assembling and steel 

jacketing, and for the new buildings modifications can be brought to the rules and 

regulations of seismic design. (Mwafy 2012). 
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As the past studies demonstrate, in Malaysia the fragility curve has been 

developed for  certain type of low to moderate rise structures (Saruddin & Nazri 2015; 

Ahmadi et al. 2014). As far as the tall buildings are concerned, there is no study so far 

to address the seismic fragility with respect to inadequate lap splice length effects in 

Malaysia.  

Hence, considering inadequate lap splice length effects, this study focuses on 

seismic fragility (using fragility relations) of tall concrete wall structures under near 

field excitations of earthquakes in Malaysia.  

 

1.3 Research Objectives 

Following are the objectives for this research: 

(a) To study the mechanism of failure of the reference buildings under the near-

field earthquake considering inadequate lap splice length effects. 

(b) To determine seismic inter-story demands of the reference buildings 

considering inadequate lap splice length effects by conducting Incremental 

Dynamic Analysis. 

(c) To develop fragility curves of the reference buildings subjected to near-field 

earthquakes considering inadequate lap splice length effects. 

1.4 Research Scope 

In this study the following scopes are observed: 

 

(a) The compressive strength of the concrete is 40Mpa. 

(b) The yield strength of the reinforcement is 460Mpa. 
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