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ABSTRACT 

Eurocode 8, BS EN 1998-1:2004 is specifying Class II  ordinary buildings 

shall be designed to interstory drift limit with displacement reduction factor, v=0.5 at 

damage limitation. However, Malaysia National Annex, MS EN 1998-1:2017 is 

specifying a more linear requirement, where no damage limitation limit state check 

required for Class II ordinary buildings. Historical events and past studies showed 

that Malaysia is expose to great seismic risk under both long-distance and near fault 

earthquake. Past researches reported that low ductile RC frame with infilled walls 

and ground floor soft story has greater tendency to experience brittle failure in 

vertical elements. This is due to strong column weak beam and excessive story drift. 

This study investigates seismic performance of residential buildings built with low 

ductile infilled RC frame with drift uncontrolled in Malaysia. Seismic performance 

(plastic hinge formation, base shear, displacement, story drift) of structural elements 

(columns and beams) and non-structural elements (infill wall) were investigated 

using non-linear static pushover analysis. At performance point, only immediate 

occupancy, IO plastic hinges founded in column and beams for all buildings cases 

which implies that seismic performance of buildings are not affected by storey, drift 

controls and soil types. At performance point, formation of collapse prevention, CP 

plastic hinges in infill walls are significant in drift uncontrolled building than drift 

controlled building and on soft ground relative to stiff ground. In short, results 

indicate that after a design earthquake, vertical and lateral force resisting systems of 

all buildings studied retain nearly all their pre-earthquake strength. However, infill 

walls experience extensive damage. According to damage performance evaluation, 4, 

7 and 10 story low ductile RC frame with infilled walls and ground floor soft story 

with drift controlled and drift uncontrolled conditions, Class II  ordinary buildings 

built on stiff soil and soft soil in Malaysia are not achieving intended targeted 

structural performance level required, life safety under design earthquake. 
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ABSTRAK 

Eurocode 8, BS EN 1998-1: 2004 menetapkan bangunan biasa Kelas II akan 

dirancang untuk had drift antara tingkat dengan faktor pengurangan anjakan, v = 0.5 

pada had kerosakan. MS EN 1998-1: 2015 menetapkan syarat yang lebih linear, tidak 

perlu pemeriksaan keadaan had kerosakan untuk bangunan biasa Kelas II. Sejarah 

dan kajian terdahulu menunjukkan bahawa Malaysia terdedah kepada risiko gempa 

bumi akibat gegaran jauh dan gegeran tempatan. Penyelidikan yang lalu melaporkan 

bahawa kerangka RC mulur yang dilengkapkan mengalami kerosakan teruk dan 

rapuh secara tiba-tiba dalam elemen menegak kritikal utama kerana kesan tiang 

lemah rasuk kuat dan pesongan berlebihan dari tingkat lembut. Kajian ini 

menyelidiki prestasi bangunan kediaman yang dibina dengan rangka RC diisi dengan 

mulur rendah tanpa kawalan drift di Malaysia. Prestasi seismik elemen struktur 

(tiang dan rasuk) dan elemen bukan struktur (dinding pengisi) disiasat menggunakan 

analisis tolakan statik bukan linier. Hasil kajian menunjukkan bangunan 4, 7 dan 10 

tingkat dengan mulur rendah lembut tingkat tanpa kawalan drift dibina di atas tanah 

kaku dan tanah lembut, setelah gempa bumi, tiang and rasuk mempunyai hampir 

sama kekuatan pra-gempa. Tetapi, dinding pengisian mengalami kerosakan teruk. 

Sesuai dengan penilaian prestasi kerosakan daripada ASCE 41-06: 2007 struktur 

perspektif anggota struktur (tiang dan rasuk) dan anggota bukan struktur (dinding 

pengisi), 4, 7 dan 10 tingkat dengan mulur rendah lembut tingkat dengan dan tanpa 

kawalan drift dibina di atas tanah kaku dan tanah lembut tidak mencapai tahap 

prestasi struktur yang disasarkan, keselamatan nyawa setelah keadaan gempa bumi. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Research Background  

Before the incident of 2004 Indian Ocean Tsunami and 2015 Ranau 

Earthquake Malaysia is believed to be a country free from natural disaster. However, 

in 2001, Malaysian Seismological Division reported that West Malaysia (Peninsular) 

and East Malaysia (Sabah & Sarawak) are susceptible to earthquake tremor from 

neighbouring tectonic plate and local fault respectively.  

Peninsular Malaysia is situated on a tectonically stable Sunda Plate. 

However, it is located nears to 2 seismically active plate which is Indian-Australian 

Plate on the West and close to Eurasian & Philippine Plate on the East. Peninsular 

Malaysia is located 300-600 kilometers from the very seismic active Sumatran 

Subduction Zone as shown in Figure 1.1 and Figure 1.2. Figure 1.2 shows that 

multiple earthquakes with magnitude Ritcher Scale up to 9.0 Mw has been happened 

up to year 2000 was originated from Sumatran Subduction Zone and Sumatran Fault 

(Rosaidi, 2001). Building in Penang, Ipoh, Johor Bahru, Port Klang and Kuala 

Lumpur and Selangor been shocked by these far-field earthquake. Evident to former, 

The Star newspaper reported that at least 800 residents of 2 blocks of condominiums 

in Johor Bahru were evacuated after tremors were felt in March 2016. Over 5500 

residents at multiple high-rise apartments in Kuala Lumpur, Malacca and Johor 

Bahru were evacuated after tremors from massive earthquake happened to Western 

coast of Indonesia’s Sumatra island on September 2017 (The Star, 2017).  
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Figure 1.1 Tectonic Plate of Southeast Asia (Tongkul, 2018) 

 

(a)                                                         (b) 

Figure 1.2 Maximum observed intensity (Mw scale) experienced in Western part 
of Peninsular Malaysia due to (a) From Sumatran subduction zone (b) From 
Sumatran fault (Rosaidi, 2001) 

In 2015, a research was conducted by Sun and Pan reported that far-field 

earthquake wave from Sumatra is expected to be amplified by soft surface materials 

and posts serious damage to buildings in Peninsular Malaysia. The similar 

phenomena of distant earthquake wave amplified by soft soil basin was happened to 

Mexico City on year 1985 which caused 4000 people lost their lives, 100,000 people 
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were left homeless, 400 buildings were destroyed, and 3200 buildings were damaged 

(Mayoral et al., 2019).  

In year 2013, Aminaton et al. reported that Peninsular Malaysia was 

experiencing local earthquakes since year 2007 as depicted in Table 1.1. These local 

earthquakes were believed from reactivations of ancient inactive fault resulted of 

intraplate stress built up after 2004 Indian Ocean Earthquake with magnitude Mw 

9.1. Therefore, Peninsular Malaysia is regarded expose to far field earthquake as it is 

occasionally affected by earthquake tremors from Sumatran fault and Sumatran 

Subduction Zone and also local fault earthquake.  

Table 1.1 Local earthquake occurrences in Peninsular Malaysia (Aminaton et 
al., 2013) 

Date Case Location Number of Earthquake 

2007-2009 24 Bukit Tinggi, Kuala Lumpur 24 
2009 4 Kuala Pilah, Perak 4 
2009 1 Jerantut, Pahang 1 
2009 1 Manjung, Perak 1 
2010 1 Kenyir Dam, Terengganu 1 
2012 1 Mersing, Johor 1 

East Malaysia, Sabah & Sarawak were reported to experienced far-field 

earthquake from Southern Philippines, Straits of Macassar, Sulu Sea, Celebes Sea 

and earthquake from active local fault. Figure 1.3 shows that Sabah was structed by 

multiple earthquakes induced from local active fault with magnitude of Ritcher scale 

3.0 Mw to 6.5 Mw between year 1995 to 2015. A highlight from Sabah earthquake 

history, a severe earthquake with 6.0 Mw was happened on June 2015 at Ranau. This 

caused RM100 million damage and 18 people were killed due to rock fall (The Star, 

2015). 
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Figure 1.3 (a) Regional tectonic map of Southeast Asia (b) Topography of Sabah 
of recorded earthquake and geomorphologically evident active fault in the region 
(C.Alih and Vafaei, 2019) 

East of Sabah is exposed to risk of tremors originated from Southern 

Philippines and Celebes sea. This is evident by a recent report from The Star 

newspaper, where on October 2018 about 24 earthquakes with magnitude of 4.4 Mw 

to 4.9 Mw have struck  Mindanao, Sulawesi and Mihahass which these area is nears 

to Sabah. At the same period, a 1.2 Mw local earthquake struck Northeast of Ranau 

as marked as depicted in Figure 1.4. 

 

Figure 1.4 Earthquakes near Sabah (The Star, 2018) 
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Furthermore, the Eurasian Plate includes Sundaland and South China Sea 

Basin is moving south-east at a rate of about 4 cm/yr. The Indian-Australian Plate is 

moving north a rate of about 7 cm/yr. Philippine Sea-Pacific Plate is moving north at 

about 10 cm/yr. Movement of tectonic plate on Southeast Asia was shown in Figure 

1.5. The relatively parallel plate motion of the tectonic plates is largely 

accommodated by lateral strike-slip faulting across the Sumatran fault and with 

recent geomorphic analyses implies that Sabah is likely affected by this contractional 

tectonic and several local micro faults was generated due to this movement (Felix 

Tongkul, 2018). 

 

Figure 1.5 Tectonic Plate of Southeast Asia (Felix Tongkul, 2018) 

Research findings show that Malaysia is surrounded by seismically active 

plate, phenomena of distant earthquake wave from Sumatra to West Peninsular 

Malaysia will be amplified by soft soil, local active fault line founded in Peninsular 

& East Malaysia. Several earthquake historical events suggest that Malaysia is not 

forever immune to seismic risk. Earthquake impacts to existing buildings and new 

buildings in Malaysia should such event occur may also be tremendous due to the 

countries’ in general lack of earthquake preparedness and resilience (Fakhrul et al., 

2004). Therefore, Malaysia is exposed to potential severe damages due to earthquake 

including injury to victim, loss of lives, physical damage to building structures, 

infrastructures, environmental changes, negative impact to socioeconomic and 

others. 
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1.2 Problem Statement 

Due to rarity of strong earthquake in Malaysia, lack of building earthquake 

resistant requirement is emphasized by local authority. Moreover, most buildings in 

Malaysia is generally designed according to gravity design code (BS 8110, MS EN 

1992) and wind design code (BS 6399, MS EN 1991) with low ductile detailing 

considered in their construction (C.Allih  and Vafaei, 2019). 

Seismic design code EN 1998 “Design of Structures for Earthquake 

Resistance”, Eurocode 8 (EC8) is available since year 1994 with National 

Determined Parameters (NDPs) is left open for local national choices due to 

differences in geological, geographical conditions, design cultures, and others.  

However, Malaysia National Annex reference to BS EN 1998 was not established for 

building design until year 2015.  

In year 2015, Malaysia National Annex reference to BS EN 1998-1:2004, 

Part 1: General rules, seismic actions and rules for buildings is published by 

Technical Committee of Earthquake under Malaysia Industry Standards Committee 

to provide appropriate seismic design parameters to Malaysia building engineering 

industry. Information of 56 NDPs is published in Malaysia National Annex (MS EN 

1998-1:, 2015) by Technical Committee to suit Malaysia seismic design condition. 

A highlight of finding from comparing design code of BS EN 1998-1: 2004 

with Malaysia National Annex is significant difference founded in requirement of 

damage limitation considering building interstory drift limit  as shown in Table 1.2. 

EC8 is specifying all building class shall be designed complying with interstorey 

drift limit in clause 4.4.3.2 with displacement reduction factor, v at damage limitation 

state accordingly. While, Malaysia National Annex is specifying that only class IV  

buildings, lifeline-built facilities specified in Table 1.3 required to be designed for 

interstory drift limit at damage limitation limit state based on a return period of 475 

years and v = 0.5 is to be adopted. Concern of whether building class I, II , III  

designed accordance to Malaysia National Annex will still achieve intended targeted 

structural building performance, life safety under design seismic is spurred.  
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Table 1.2 Reduction factor for building displacement at damage limitation state, 
Malaysia values for Nationally Determined Parameter (MS EN 1998-1:, 2017) 

Clause 

Nationally 

Determined 

Parameter 

Eurocode 

Recommendation 
Malaysia’s Decision 

4.4.3.2(2) Reduction factor, v 

for displacement at 

damage limitation 

limit state 

Class I and II : v = 

0.5 

Class III  and IV: v 

= 0.4 

Only Class IV buildings 

need to be checked for 

damage limitation limit state 

based on a return period of 

475 years. V = 0.5 is ot be 

adopted 

 

 

Table 1.3 Classification of building importance class (MS EN 1998-1, 2017) 

Building 

Importance Class 

Recommended Building Categories 

I Minor construction 

II  Ordinary buildings (Individual dwellings or shops in low rise 

buildings) 

III  Buildings of large occupancies (condominium, shopping 

centres, school and public buildings) 

IV  Lifeline built facilities (Hospitals, emergency services, power 

plants and communication facilities) 

 

 

Most of residential buildings in Malaysia featured with open space ground 

floor to facilitate driveway and parking. Infill wall s above ground floor generally are 

not adequately separated from reinforced concrete frame which contribute to 

unintended lateral stiffness to a building. These infill walls are usually considered as 

non-structural element and are not included in analytical models (Konstantinos K and 

Asimina A, 2019). Absence of infill wall at ground floor coupled with non-structural 

infill wall s at upper floors leads to differentiate stiffness and strength between the 

upper floors and the open space ground floor. The aforementioned conditions have 

caused lateral displacements mostly concentrate on their first floor rather than being 
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distributed along height of the structure (C. Alih and Vafaei, 2019). Subsequently, 

building inter-storey drift at first floor is expected to be detriment great as shown in 

Figure 1.6 due to building vertical irregularity, namely soft storey effect. 

 
Figure 1.6 Soft storey effect 

Soft-story building that caused significant inter-story drift issue often trigger 

the question of necessity conduct interstory drift check according to limitation 

requirement for all building class rather than Class IV building, lifeline facilities only 

as per requirement in Malaysia National Annex. Therefore, the aforementioned 

condition has initiated the research to investigate seismic response of local common 

low ductile infilled multi-storey residential building (Class II ) with ground soft story 

feature that built on soft soil and stiff soil that are also susceptible to deep soil effects 

The drift uncontrolled frames to be investigated are designed to Malaysia National 

Annex to EC8 in complying with damage limitation requirement and achieve 

intended targeted structural building performance, life safety. 
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1.3 Research Objectives 

This study is initiated on following objectives:  

a) To investigate the failure mode and plastic hinge formation in the ground 

soft-storey RC framed buildings designed in accordance with the Malaysian 

National Annex to EC 8 (Drift Uncontrolled) and EC 8 (Drift Controlled) 

respectively. 

b) To calculate the drift demand and capacity of ground soft-storey RC framed 

buildings designed in accordance with Malaysian National Annex to EC 8 

and compare it with EC 8.  

c) To establish seismic design recommendation for ground soft-storey RC 

framed buildings designed in accordance with the Malaysian National Annex 

to EC 8  

1.4 Research Scope 

The study is focusing on following scopes: 

a) 4, 7, and 10 storeys of RC frame residential buildings (Class II)  with regular 

in plan & elevation configuration and with ground-soft storey.  

b) Each building comprises of 5 bays of 2.5m & 6m span (x-axis) and 3 bays of 

5m span (y-axis), and typical story height of 3m except for the ground story 

having height of 4m. The total height of building is 13m, 22m and 31m 

respectively. Building layout is shown in Figure 3.2. 

c) Masonry wall lift shaft is included for 7 and 10 storeys building as it is common 

to have elevator in building greater than 4 storey.  

d) Low ductile ground soft-storey reinforced concrete (RC) infilled framed on 

soft and stiff soil accounting deep soil effect, designed in accordance 

Malaysia National Annex to EC8 (Drift Uncontrolled) and EC8 (Drift 

Controlled) respectively in Peninsular Malaysia.  
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e) Horizontal elastic response spectrum of ground types B (Stiff soil) and D 

(Soft soil) for Sabah with 5% damping and peak ground acceleration, PGA of 

0.16g in MS EN 1998-1:2017 were considered in building analysis.  

f) Low ductile building structures designed and detailed under envelope load 

combination of following: 

a. Gravity (BS 8110-1997) + Wind (MS 1553:2002) + Seismic (BS EN 

1998-1:2004) 

b. Gravity (BS 8110-1997) + Wind (MS 1553:2002) + Seismic (MS EN 

1998-1:2005) 

g) Compressive cube strength of concrete, fcu (MPa): 

a. Beam and slab = 25 

b. Column = 30, 35, 40, 45, 50 

h) Yield strength of reinforcement, fy: 460 MPa. 

1.5 Significant of Research 

Significant of this study is provided a brief finding whether low-ductile 

residential building (building Class II ) with ground soft storey in Malaysia designed 

to Malaysia National Annex without considering drift limit can achieve intended 

targeted “life safety” structural building performance, under design seismic load. 

Findings of this study is useful to Department of Standards Malaysia to 

evaluate whether it is necessary to tighten current requirement in Malaysia National 

Annex reference to Eurocode 8 from “to conduct interstorey drift limitation check for 

building Class IV, lifeline-built facilities only” to other building classes.  

  



 

11 

1.6 Organization of Chapters 

This thesis documented the research work into 5 chapters as following: 

a) Chapter 1 presented research background, problem statements and research 

objectives, research scope and significant of research. 

b) Chapter 2 presented literature review and findings of past studies by other 

researchers.  

c) Chapter 3 presented the methodology and engineering analysis. 

d) Chapter 4 presented result of modal analysis, gravity, wind, and seismic 

(lateral force method analysis) and non-linear static pushover analysis of 

buildings studied.  

e) Chapter 5 concluded the finding of this research work, technical suggestion 

and recommendations of future research work.  

f) Finally, references and appendices were attached at the end part of this thesis. 
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