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ABSTRACT 

 Triclosan (TCS) is one of the biocide that functions as antibacterial and 

antifungal agent and has the ability to kill and hinder the growth of bacteria. Hence, 

it is used in many personal care and health care products such as in shampoo, 

detergent, first aid, deodorant and cosmetics. However, TCS can cause health and 

environmental problems such as environmental pollutions, carcinogenic impurities, 

acute toxicity and endocrine disruption. Due to rapid urbanizations and growth 

populations, TCS was detected in many sewage treatment plants, river, and soil. The 

conventional system that was used to remove TCS and other pollutants from water 

used a lot of chemicals, involved a time-consuming procedure and cannot effectively 

remove all the pollutants from water. Therefore, the effective method to remove TCS 

with high removal rate in shorter time was studied. The aim of this study was to 

investigate the removal of TCS from aqueous solution by combining the activated 

carbon (AC) with nylon 6,6 nanofiber. In this study, AC from coconut pulp waste 

(Cocos nuciefera) and nylon 6,6 nanofiber were used to remove TCS from aqueous 

solution. The effects of physico-chemical parameters and physical-chemical 

characteristics for both AC and nanofiber have been studied to determine the best 

possible conditions for maximum removal of TCS. The AC was prepared by using 

coconut pulp waste treated with Zinc Chloride and was carbonized under nitrogen 

flow at 300 ˚C for 1 hour. The nylon 6,6 nanofiber [14 wt.%] was prepared by using 

electrospinning machine with injection rate at 0.4 mL/h, tip-to-collector distance at 

15 cm, rotation speed at 1000 rpm and high voltage at 26 kV. The parameters studied 

for AC and nylon 6,6 nanofiber during the adsorption test were contact time, 

adsorbent dosage, agitation speed, initial TCS concentration, pH and temperature of 

the TCS solution. Besides that, the filtration test was done by using flat sheet 

membrane test machine at pressure 1.0 bar. The characteristics of AC and nylon 6,6 

nanofiber were analysed by using Field Emission Scanning Electron Microscopy 

(FESEM), Fourier Transform Infrared Spectroscopy (FTIR) and Brunauer–Emmett–

Teller (BET). The experiments show that the adsorption method by using AC can 

remove 83.3 % of TCS within 20 minutes and the filtration method by using nylon 

6,6 can remove 90.2 % TCS within 5 minutes. After combine the adsorption and 

filtration method of both AC and nylon 6,6 nanofiber, the removal of TCS increased 

to 100 % removal in less than 5 minutes. For isotherms study, the AC follow 

Langmuir isotherm and nylon 6,6 nanofiber follow Freundlich isotherm. While for 

kinetics study, both AC and nylon 6,6 follow pseudo-second-order model. This study 

proved that the combination of AC and nylon 6,6 nanofiber can increase the removal 

of TCS in water.  

 

  



vii 

ABSTRAK 

Triklosan (TCS) adalah salah satu daripada biosid yang berfungsi sebagai 

agen antibakteria dan antikulat dan mempunyai keupayaan untuk membunuh dan 

menghalang pertumbuhan bakteria. Oleh itu, ia digunakan dalam banyak produk 

penjagaan diri dan penjagaan kesihatan seperti syampu, detergen, alat pertolongan 

cemas, pewangi ketiak dan kosmetik. Bagaimanapun, TCS boleh menyebabkan 

masalah kesihatan dan persekitaran seperti pencemaran alam sekitar, kekotoran 

karsinogen, ketoksikan akut, gangguan endokrin dan lain-lain. Oleh sebab 

perkembangan proses pembandaran dan populasi yang semakin pesat, TCS telah 

banyak dikesan di dalam loji rawatan air kumbahan, sungai, dan dalam tanah. Sistem 

konvensional yang digunakan untuk membuang TCS dan bahan pencemar lain dari 

air menggunakan banyak bahan kimia, melibatkan kaedah dan proses yang memakan 

masa dan tidak dapat menghapuskan semua pencemar dari air dengan berkesan. Oleh 

itu, kaedah berkesan untuk membuang TCS dengan kadar penyingkiran yang tinggi 

dalam masa yang lebih singkat dikaji. Tujuan kajian ini adalah untuk mengkaji 

penyingkiran TCS dari larutan akues dengan menggabungkan karbon diaktifkan 

(AC) dengan nilon 6,6 nanogentian. Dalam kajian ini, AC dari sisa hampas kelapa 

(Cocos nuciefera) dan nilon 6,6 nanogentian digunakan untuk membuang TCS 

daripada larutan akues. Kesan parameter dan ciri-ciri fizik-kimia untuk kedua-dua 

AC dan nanogentian telah dikaji untuk menentukan keadaan terbaik bagi 

menyingkirkan TCS secara maksima. AC disediakan dengan menggunakan sisa 

hampas kelapa yang dirawat dengan Zink Klorida dan dikarbonkan di bawah aliran 

nitrogen pada 300 ˚C selama 1 jam. Nilon 6,6 nanogentian [14 wt. %] pula 

disediakan dengan menggunakan mesin elektroputaran dengan kadar suntikan pada 

0.4 mL/h, jarak antara jarum ke pengumpul pada 15 cm, kelajuan putaran pada 1000 

rpm dan voltan tinggi pada 26 kV. Parameter yang dikaji untuk AC dan nilon 6,6 

nanogentian semasa ujian penjerapan adalah masa persentuhan, dos penjerap, 

kelajuan goncangan, kepekatan awal larutan TCS, pH dan juga suhu. Selain itu, ujian 

penapisan dilakukan dengan menggunakan mesin uji nanogentian lembaran rata pada 

tekanan 1.0 bar. Ciri-ciri AC dan nilon 6,6 nanogentian dianalisa dengan 

menggunakan Mikroskop Elektron Pengimbas Pelepasan Medan (FESEM), 

Spektroskopi Inframerah Transformasi Fourier (FTIR) dan Brunauer-Emmett-Teller 

(BET). Eksperimen menunjukkan bahawa kaedah penjerapan menggunakan AC 

boleh mengalih keluar 83.3% TCS dalam masa 20 minit dan kaedah penapisan 

dengan menggunakan nilon 6,6 nanogentian boleh mengeluarkan 90.2% TCS dalam 

masa 5 minit. Selepas menggabungkan kaedah penjerapan dan penapisan kedua-dua 

AC dan nanogentian, penyingkiran TCS meningkat kepada 100% penyingkiran 

dalam tempoh kurang daripada 5 minit.Untuk kajian isoterma, AC mengikut 

isoterma Langmuir dan nilon 6,6 mengikut isoterma Freundlich. Manakala untuk 

kajian kinetik, kedua-dua AC dan nilon 6,6 nanogentian mengikut model pseudo-

tertib-kedua. Kajian ini membuktikan bahawa gabungan AC dan nilon 6,6 

nanogentian boleh meningkatkan penyingkiran TCS dalam air.  
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

 

1.1  Background of Study 

 

 

 Rivers and lakes are important sources of water that need to be protected 

from any pollutants. Nowadays, there are new emerging pollutants (NEP) detected in 

water sources especially in the rivers and lakes such as dyes, pesticides, 

pharmaceutical and personal care products (PPCPs), herbicides and fertilizers. 

PPCPs are the products used for individual health and cosmetics reasons such as 

medicine, deodorant, shower and so on. Ebele et al (2017) stated that, PCPPs is one 

of the Endocrine Disrupting Chemicals (EDC) contaminates that has ability to induce 

physiological effects in human and aquatic life even at low doses. EDC are 

chemicals that may happen naturally or from industrial and plasticizers substances 

that consist of hundreds or more exogenous chemicals, or mixtures of chemicals that 

disturb any aspect of hormone action (Zoeller et al, 2012; Ribeiro et al, 2016).  

 

 

 Triclosan (TCS) is a chlorinated aromatic compound that has functional 

groups of both ethers and phenols. TCS is one of the antibacterial and antifungal 

agents that are normally used in medical and consumer products, such as surgical 

scrubs, toothpastes, hand wash soaps, mouthwash, shampoos, plastics, toys, textiles 

and deodorants (Yueh et al, 2014; Teitelbaum et al, 2015). It has the ability to hinder 

the growth of microorganisms and due to its presence in many consumer products, it 

has been detected in most of the sediments, biosolids, surface water, soil, and aquatic 

species (Montaseri and Forbes, 2016). Wang et al (2017) reported that, the 

concentrations of TCS detected from conventional wastewater treatment plants at 
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their influent, effluent and slurries produced were approximately 26.8 µgL
-1

, 2.7 

µgL
-1 

and 373.4 µgL
-1

, respectively, and more than 90 % of the TCS was removed 

from water and wastewater treatment plants. But, TCS has a high log Kow at 4.76 that 

shows its high sorption potentials to adsorb onto the sewage sludge, normally used as 

fertilizers (Dhillon et al, 2015).  

 

 

 Although TCS is an antibacterial agent, it also gives a potential risk to the 

human health and the environment. Zhu et al (2016) reported that, TCS was detected 

in 97 % of urine samples of 471 men with concentrations from 0.41 to 2.95 ng (mg 

creatinine)
-1

 and it caused some adverse effects to the semen quality, such as, low 

sperm production and poor forward mobility. Besides, TCS has a high 

bioaccumulation potential and it can enter the food web system and cause toxicity to 

some aquatic life species (Dhillon et al, 2015).  

 

 

 The presence of TCS in the aquatic environment is well known to be a source 

of pollutants. Hence, several treatment methods have been implemented to remove 

TCS from the water such as using cellulose acetate (CA) membrane (Zhang et al, 

2015), ammonia amendment and bioaugmentation in nitrifying activated sludge (Lee 

et al, 2015), dielectric barrier discharge plasma combined with activated carbon 

fibers (Xin et al, 2016) and ozonation (Orhon et al, 2017). However, some of these 

treatments involved complex procedures, high costs of treatments and maintenance, 

large volumes of chemicals and long processing times (Wang et al, 2013a). 

 

 

 In recent years, the adsorption process is one of the famous methods applied 

to remove chemicals and dyes in water and wastewater treatments, as compared to 

the other methods, due to its wide range of applications and less sludge being 

produced. Several adsorption studies to remove TCS were done by using rice straw-

derived activated carbon (Liu et al, 2014), charcoal-based activated carbon (Behera 

at al., 2010), conventional activated carbon (Weinwr et al, 2017), civilian protective 

gas mask activated carbon (Sharipova et al, 2016), magnetic carbon composites from 

hydrochar (Zhu et al, 2014) and wastewater biosolids-derived biochar (Tong et al, 
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2016). High surface areas, micro-porous structures and high degrees of surface 

reactivity make activated carbons as versatile adsorbents, particularly effective for 

the adsorption of organic and inorganic pollutants from aqueous solutions (Pezoti et 

al, 2016; Sayğılı and Güzel, 2016).  

 

 

 But, the preparation for commercial activated carbons caused increased costs 

and this has encouraged researchers to search for low cost materials as alternatives 

(Wirasnita et al, 2014). The agricultural wastes are one of the promising sources as 

they are inexpensive, easy to collect and environmental friendly (Rahmat et al, 

2016). Besides, they also have a high efficiency in trap and remove chemicals and 

dyes in water due to the availability of many functional groups, such as alcohols, 

phenolic, amido, amino, carboxyl, carbonyl and ester (Lazim et al, 2015a). The 

agricultural wastes from coconut trees are one of the promising materials to be used 

as adsorbents due to their abundance in nature, high porous structures and high 

adsorption capability. The coconut tree parts commonly used as adsorbents were the 

frond (Njoku et al, 2014), pulp waste (Kamari et al, 2014), husk (Dabwan et al, 

2015), coir (Hettiarachchi et al, 2016), bunch (Rahmat et al, 2016), leaves (Jawad et 

al, 2016) and shell (Kaman et al, 2017).  

 

 

 Other than that, membrane is one of the technologies used for treatments of 

various chemicals and pollutants in water. It is an advanced treatment technology 

that is well known and it has become one of the preferred options for water and 

wastewater treatments, food industries, petrochemical industries, chemical industries 

and pharmaceutical industries (Salehi, 2014; Padaki et al, 2015; Zheng et al, 2015; 

Jafarinejad, 2017; Piacentini and Giorno, 2017; Mistry and Maubois, 2017). 

Membrane treatment is one of the most potential and favourable methods because it 

has many advantages, such as no addition of chemicals required, no secondary 

pollutants produced, low energy consumption, easy to handle, low operating and 

maintenance costs, easy to scale-up, high porous structure and high recovery and 

reusability (Xu et al, 2015; Conidi et al, 2016; Castro-Muñoz et al, 2016; Jasni et al, 

2017b).  
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 Most of the membranes are made with polymeric materials and they are 

available in various types of structures and properties. Some of the organic polymers 

used are polysulfone (PSF), polycarbonates (PC), polyethersulfone (PES), polyamide 

and polyimide (PI) (Topaloğlu, 2015). Meanwhile, nylon 6,6 is a polyamide polymer 

that is excellent in mechanical strength, toughness, rigidity and stability with self-

lubricating properties and cost effective in nature (An et al, 2017; Jasni et al, 2017a). 

It is also hydrophilic, thinner, highly porous, highly permeant, better in fouling 

resistant and less complicated in structures (Huang and McCutcheon, 2014; Bilad et 

al, 2018). These advantages have promoted nylon as a functional polymer for many 

biomedical and environmental applications (Jasni et al, 2017a). 

 

 

 However, finding the best and the most affordable treatments for TCS, so that 

its long term effects to the aquatic life, wild life and human health can be prevented 

remains a concern for the researchers. Therefore, this research studied the efficiency 

of two methods, adsorption and filtration by using selected activated carbon and 

nylon 6,6 membrane respectively and the suitability of both adsorption and filtration 

methods combined together to remove TCS in water. 

 

 

 

 

1.2  Problem Statement  

 

 

 In recent years, most of the people are getting more concerned about their 

health issues. This concern has encouraged them to use antibacterial-based products 

in their daily life, such as hand wash, shower cream, deodorant, toys, cosmetics, 

detergent and others. In urban areas, antimicrobial agents were detected in most of 

their wastewater treatment plants effluents, rivers and lakes (Elmekki, 2014; Halden, 

2014). In Malaysia, TCS was detected in Lui River, Selangor with concentration at 

20.80 ng/L (Praveena et al, 2018). Other than that, China also detected with TCS in 

their rivers with concentration 105.0 ng/L (Yang et al, 2018). The present of this 

pharmaceutcal substance is most likely due to the large pharmaceuticals production 
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including over-the counter medications, prescription drug products, nutraceuticals, 

traditional medicines, and health supplements in all dosage forms (Hassali et al., 

2009).Singer et al (2002) reported that, 79% of TCS was biologically degraded, 15% 

was adsorbed to the sludge and 6% escaped the wastewater treatment plant and flew 

out in the final effluent to the water sources. Although only a small number of TCS 

leaves the water and wastewater treatment plants, it can cause bioaccumulation and 

negatively affect human health and animals (Dhillon et al, 2015). Besides that, 

photodegradation and biodegradation processes take place to TCS in water and then 

produced chlorophenols, dioxins (such as 2,8-DCDD) and methyltriclosan (MTCS) 

that are very toxic and can kill aquatic life (Tohidi and Cai, 2017). In addition, over 

75% of the US populations have been detected with TCS in their blood and urine 

(James et al, 2015).  

 

 

 There were many treatments that had been conducted to remove and reduce 

TCS from water sources, either by physical, chemical or biological methods. 

However, some of the treatments involve high maintenance costs, complex operation 

procedures and are time consuming, besides producing secondary chemicals (Wang 

et al, 2013a). The adsorption treatment is one of the methods that can remove TCS 

from water. The previous researches reported that, granular-activated carbon can 

remove 87 % of TCS (Katsigiannis et al, 2015), wastewater biosolids-derived 

biochar can remove 75 % of TCS (Tong et al, 2016) and gas mask activated carbon 

can remove 88 % of TCS (Sharipova et al, 2016) from the water. Even so, the 

conventional activated carbon productions are expensive. The efforts to reduce water 

treatment cost had encouraged the researchers to find cheaper materials to replace the 

conventional activated carbon.  

 

 

 The usage of agricultural wastes can help to reduce costs of adsorbent 

materials due to their low price and abundance in nature. However, only a few 

studies were done using agricultural wastes to remove TCS in water such as 

ricestraw (Liu et al, 2014) and stevia plant residue (Yokoyama et al, 2019). 

Agricultural waste consist of some basic elements such as lipids, lignin, cellulose, 

hemicellulose, hydrocarbons, extracts, proteins, starch, simple carbohydrates and 
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water and also containing a variety of functional groups that present in the binding 

process and can sequestering of pollutant (Lazim et al, 2015a). Cellulose elements 

are significance in adsorption process since it has potential sorption capacity for 

various pollutants. Besides that, agricultural waste has many functional groups such 

as alcohols, phenolic, carboxyl, carbonyl, amino and esters that can help to form 

chemical bonding with pollutants (Lazim et al, 2015b). Besides that, in Malaysia, 

there are a lot agricultural wastes that did not fully utilized and disposed by the user 

and industries such as coconut waste, sugarcane waste, paddy field waste and so on. 

Some of the agricultural waste are abundance in nature and idle. Hence, some 

potential agricultural wastes were selected and studied in order to find new material 

that can remove TCS in water.  

 

 

 In addition, the membrane technology is used in many treatment processes 

especially for water and wastewater treatment. Membrane has a lot of functional 

group that can help to form bonding with the pollutants such as carbonyl groups, 

ether, ester, hydroxyl groups and so on. The hydrogen bonding between pollutants 

and carbonyl groups of membrane can help to increase pollutants removal in water. 

But, some of the pollutants are not completely removed by membrane technology 

due to some problems such as the tendency for fouling to occur during the treatment 

process. Xu et al (2014) reported that, the mesoporous nanofibers could remove 60 % 

to 72 % of TCS from the water. Hence, the combination of both activated carbon and 

membrane treatment to remove TCS in water was investigated in order to maximize 

the removal of TCS in water. Furthermore, there is a lack of studies that analyzed the 

combination of two treatment methods that apply both filtration and adsorption 

concept to treat TCS from the water. The lacking of previous study might be due to 

the function of the treatment as both of the treatments apply filtration concept but 

with different media 
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1.3  Research Objectives  

 

 

 The aim of this study was to investigate the adsorption of TCS from aqueous 

solution by combining the coconut pulp waste activated carbon with nylon 6,6 

nanofiber. The objectives of this study are as follows: 

 

 

1) To determine the potential agricultural wastes as adsorbent to remove TCS 

from water. 

2) To investigate the effects of physico-chemical parameters for the TCS 

removal by using coconut pulp waste activated carbon and nylon 6,6 

nanofiber. 

3) To evaluate the adsorption kinetics and isotherms of TCS on coconut pulp 

waste activated carbon and nylon 6,6 nanofiber. 

4) To determine the performance of combination method using coconut pulp 

waste activated carbon and nylon 6,6 nanofiber in removing TCS. 

5) To study the physical and chemical characteristics of both activated carbon 

and nylon 6,6 nanofiber.  

 

 

 

 

1.4  Scope of Study 

 

 

 This study was conducted by using activated carbon from coconut pulp waste 

and nylon 6,6 membrane. A total of eight types of agricultural wastes, namely, 

coconut frond, coconut husk, coconut pulp waste, dates seed, galangal stem, 

rambutan peel, orange peel and sugarcane bagasse were used for the screening 

process. The coconut pulp waste was selected as the best adsorbent to remove TCS in 

water due to its highest TCS removal within 24 hours. Subsequently, the selected 

material was prepared as activated carbon by using a horizontal furnace. For nylon 

6,6 membrane, the membrane sheet was fabricated using an electrospinning machine.  
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 The batch studies were done to investigate the effects of various parameters 

on the TCS removal for both activated carbon and membrane during the adsorption 

study. The parameters tested were adsorbent dosage, pH, temperature, contact time, 

agitation speed and initial TCS concentration. Besides, the filtration study was done 

for nylon 6,6 membrane by using a flat sheet membrane test machine. The 

compaction test, water flux and TCS flux were analyzed during this study. The TCS 

residues after being filtered through the permeation cell were collected and 

measured. The TCS residues from all of the experiments were read using UV-Vis 

spectrophotometer at wavelength (λmax) 279 nm.  

 

 

 In this research, the TCS removal by the combination method using both 

filtration and adsorption processes was conducted under the conditions of the best 

parameters obtained from activated carbon and membrane batch studies. The 

experiments were carried out by using a flat sheet membrane test machine. The 

percentages of TCS removal using a single method from adsorption and filtration 

were compared with those obtained using the combination of both methods.  

 

 

 The surface morphology and functional groups of activated carbon and 

membrane before and after TCS removal were investigated using Fourier Transform 

Infrared Spectroscopy (FTIR) and Field Emission Scanning Electron Microscope 

(FESEM). For Brunauer-Emmett-Teller (BET) test, only activated carbon was 

analyzed. The surface areas of the raw coconut pulp waste, coconut pulp waste 

activated carbon and the activated carbon after TCS adsorption were studied. The 

BET test was not applied for membrane. 
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1.5  Significance of the Study 

 

 

 The significance of this research was to carry out the best treatment to 

remove TCS in water by a combination of adsorption and filtration methods using 

coconut pulp waste activated carbon and nylon 6,6 membrane, respectively. Even 

though there were many treatment methods studied to remove TCS, this combined 

method has not been studied yet by any researchers. Besides, this method can 

achieve a maximum TCS removal in high percentages, in less than 24 hours.  

 

 

 Malaysia is a country that produces a lot of agricultural products. The 

agricultural wastes produced are not fully utilized and they are often thrown to the 

landfill or left to decompose by natural processes. Hence, this study can help to give 

ideas for further usages of agricultural wastes. The coconut pulp waste is an 

abundant agricultural waste and it is normally thrown or used as animal feed. 

Moreover, the coconut pulp waste is not widely used as activated carbon. This 

research can help coconut milk industries to reduce their waste and encourage 

economic activities for agricultural industries. Therefore, this research can give 

benefits, both environmentally and economically to people in Malaysia. 

 

 

 

 

1.6 Thesis Organization 

 

 

 This thesis consists of five main parts, beginning with chapter one and ending 

with chapter five, all being interconnected with each other. In chapter one, the 

discussions are focusing on the background of the study, problem statement, research 

objectives, scope of the study and the significance of this study. Meanwhile, in 

chapter two, all issues, facts and knowledge related to TCS, activated carbons and 

membranes are elaborated. Previous researches, articles, books and other resources 

were used as references. Following this, in chapter three, the focus is on the ways 
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APPENDIX A 

 

 

Adsorption Isotherms Calculations for both Activated Carbon and Membrane 

 

 

ADSORPTION BY COCONUT PULP WASTE: 

 

 

1. Langmuir Isotherm 

 

 

From Figure 4.12, all the Langmuir constants were calculated as below; 

 

  y = mx + C  

  

   
 (

 

   
)    

 

    
                                (a) Langmuir equation 

 Y = 0.0307 x + 0.1509                   (b) Straight line equation from Langmuir graph 

R
2
 = 0.9714 

 

By comparison: (a) = (b) 

 

 1 / Qm = 0.0307      

      Qm = 1/ 0.0307             

      Qm = 32.5731 mg/g 

 

1 / (KLQm) = 0.1509 

              1 = (0.1509) (KL x 32.5731)  

            KL = 0.2034 L/mg 

 

RL = 1 / (1 + (KL Cₒ) ) 

RL = 1 / (1 + (0.2034 L/mg x 90 mg/L) ) 

RL = 0.0518 
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2. Freundlich Isotherm 

 

 

From Figure 4.13, all the Feundlich constants were calculated as below; 

 

        y = mx + C                            

      (
 

  
)                             (a) Freundlich equation 

       Y = 0.5149 x + 0.778                (b) Straight line equation from Freundlich graph 

      R
2 

= 0.7726 

 

By comparison: (a) = (b) 

 

1 / n = 0.5149 

     n = 1.9421 

 

log KF = 0.7780 

      KF = 5.9980 (mg/g)(L/mg)⅟ⁿ 

 

 

 

 

3. Temkin Isotherm 

 

 

From Figure 4.14, all the Temkin constants were calculated as below; 

 

   y = mx + C                            

      (    )   (   )                          (a) Temkin equation 

   y = 7.1441x + 5.5208                   (b) Straight line equation from Temkin graph 

 R² = 0.9124 
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By comparison: (a) = (b) 

 

B = 7.1441 J/mol 

 

B (ln A) = 5.5208 

          A = 2.1658 L/g 

 

 

 

 

ADSORPTION BY NYLON 6,6 MEMBRANE: 

 

 

1. Langmuir Isotherm 

 

 

From Figure 4.24, all the Langmuir constants were calculated as below; 

 

  y = mx + C  

  

  
 (

 

   
)    

 

    
                       (a) Langmuir equation 

 Y = - 0.0350 x + 0.3061               (b) Straight line equation from Langmuir graph 

R
2
 = 0.6605 

 

By comparison: (a) = (b) 

 

 1 / Qm = - 0.0350      

    - Qm = 1/ (- 0.0350)            

      Qm = 28.5714 mg/g 

 

1 / (KLQm)  = 0.3061 

               1 = (0.3061) (KL x 28.5714)  

             KL = 0.1143 L/mg 
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RL = 1 / (1 + (KL Cₒ) ) 

RL = 1 / (1 + (0.1143 L/mg x 90 mg/L) ) 

RL = 0.0886 

 

 

 

 

2. Freundlich Isotherm 

 

 

From Figure 4.25, all the Feundlich constants were calculated as below; 

 

        y = mx + C                            

      (
 

  
)                           (a) Freundlich equation 

       Y = 1.4528 x + 0.5569            (b) Straight line equation from Freundlich graph 

     R
2 

= 0.9821 

 

By comparison: (a) = (b) 

 

1 / n = 1.4528 

     n = 0.6883 

 

log KF = 0.5569 

     KF = 3.6050 (mg/g)(L/mg)⅟ⁿ 
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3. Temkin Isotherm 

 

 

From Figure 4.26, all the Temkin constants were calculated as below; 

 

   y = mx + C                            

     (    )   (   )                           (a) Temkin equation 

   y = 18.8060 x + 3.4592                 (b) Straight line equation from Temkin graph 

 R² = 0.9159 

 

By comparison: (a) = (b) 

 

B = 18.8060 J/mol 

 

B (ln A) = 3.4592 

           A = 1.2019 L/g 
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APPENDIX B 

 

 

Adsorption Kinetics Calculations for both Activated Carbon and Membrane 

 

 

ADSORPTION BY COCONUT PULP WASTE: 

 

 

1. Pseudo-First-Order 

 

From Figure 4.15, all the pseudo-first-order constants were calculated as below; 

 

                y = mx + C                            

    (  -  )  -                                                                       (a) Pseudo-first-order equation 

                y = - 0.1416x + 0.1357                                (b) Straight line equation from  

              R
2
 = 0.7224                                                         pseudo-first-order graph    

 

By comparison: (a) = (b) 

 

k1 = 0.1416 mg/g min 

 

ln qe =0.1357 

     qe = 1.1453 mg/g 
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2. Pseudo-Second-Order 

 

 

From Figure 4.16, all the pseudo-second-order constants were calculated as below; 

 

  y = mx + C                            

 

  
 

 

     
 

 

  
                                                       (a) Pseudo-second-order equation 

  y = 0.4528x + 0.8045                           (b) Straight line equation from  

R
2
 = 0.9880                                                   pseudo-second-order graph  

 

By comparison: (a) = (b) 

 

         1 / qe  = 0.4528 

               qe = 2.2085 mg/g 

 1 / (k2 qe 
2
) = 0.1357 

               k2 = 0.02549 mg/g min 

 

 

 

 

3. Intraparticle Diffusion 

 

 

From Figure 4.17, all the intra-particle diffusion constants were calculated as below; 

 

     y = mx + C                            

             
                                                                         (a) Intra-particle diffusion equation 

     y = 0.4201x + 0.2277                                     (b) Straight line equation from  

   R
2
 = 0.8562                                                             intra-particle diffusion graph 

 

By comparison: (a) = (b) 

kdif = 0.4201 mg/g min
1/2 

  C = 0.2277 mg/g 
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ADSORPTION BY NYLON 6,6 MEMBRANE: 

 

 

1. Pseudo-First-Order 

 

From Figure 4.27, all the pseudo-first-order constants were calculated as below; 

 

                 y = mx + C                            

  (  -  )  -                                              (a) Pseudo-first-order equation 

                 y = - 0.5775 x + 0.0872                (b) Straight line equation from  

               R
2
 = 0.5158                                           pseudo-first-order graph    

 

By comparison: (a) = (b) 

 

k1 = 0.5775 mg/g min 

 

ln qe = 0.0872 

     qe = 1.0911 mg/g 

 

 

 

 

2. Pseudo-Second-Order 

 

 

From Figure 4.28, all the pseudo-second-order constants were calculated as below; 

 

  y = mx + C                            

 

  
 

 

     
 

 

  
                                                       (a) Pseudo-second-order equation 

  y = 0.4531 x + 0.0763                          (b) Straight line equation from  

R
2
 = 0.9981                                                  pseudo-second-order graph  
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By comparison: (a) = (b) 

 

1 / qe  = 0.4531 

      qe = 2.2070 mg/g 

 

1 / (k2 qe 
2
) = 0.0763 

              k2 = 2.6907 mg/g min 

 

 

 

 

3. Intraparticle Diffusion 

 

 

From Figure 4.29, all the intra-particle diffusion constants were calculated as below; 

 

    y = mx + C                            

             
                                                                           (a) Intra-particle diffusion equation 

    y = 0.8597 x + 0.5466                                      (b) Straight line equation from  

  R
2
 = 0.8236                                                              intra-particle diffusion graph 

 

By comparison: (a) = (b) 

 

kdif = 0.8597 mg/g min
1/2 

 

 C = 0.5466 mg/g 
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