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ABSTRACT 

 

 

 

 

Driven by huge demands and needs, the communication industry has tremendously 

grown in all over the world. With the development of low loss optical fiber as the 

main optical communication medium, high power tunable laser and other related 

auxiliary components are developed to practically opt as an alternative to the 

electrical communication system. In conjunction with the rapid growth of data traffic 

and high bandwidth demands, 2 μm wavelength region has been looked out for. In 

this study, the generation of thulium-doped fiber laser is thoroughly investigated 

especially in generating pulsed laser. Passively Q-switched thulium-doped fiber laser 

(TDFL) is successfully experimented by using graphene-based saturable absorber 

(SA) as a Q-switcher in modulating the intra-cavity loss experienced by the fiber 

laser system. In the generation of Q-switched TDFL, the laser system has been set up 

in two configurations; ring cavity and linear cavity. The comparison of the laser 

performance in terms of frequency, output power, pulse width, and pulse energy 

differ significantly to each laser cavity. Moreover, the effects of nonlinearities also 

contribute to the generation of the Q-switched TDFL. These effects can be seen in 

the wider spectrum of the Q-switched TDFL as being compared to the spectrum of 

the continuous wave (CW) laser. In this study, four set ups of Q-switched TDFL in 

ring cavity using four different SAs have been investigated whereas a set of Q-

switched TDFL experimented in a linear cavity. Besides that, this study also focuses 

on the designations of thulium-doped fiber amplifier that can be applied for future 

generation in optical communication. As aforementioned, 2 μm wavelength region 

has been the interest of the optical communication society at present. In this study, 

the thulium-doped fiber amplifier (TDFA) is demonstrated through simulation by 

OptiSystem v. 13. The basic single stage TDFA is successfully demonstrated and this 

design is made comparable to the dual-stages TDFA which utilized the pump 

distribution technique. In the dual-stages with distributed pumping configuration, the 

pump power is distributed into two stages. Fifty percent of the pump power is being 

used in the first stage while another fifty percent is being used in the second stage. 

Tri-stages TDFA is also being demonstrated through the OptiSys and it had been 

made comparable to the dual-stages TDFA where both TDFAs are utilizing the same 

enhancement technique. It is shown that the dual-stages TDFA has successfully 

decreased the noise figure of about 2 dB. All TDFAs were investigated in achieving 

high gain, high output power with low noise figure.  
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ABSTRAK 

 

 

 

 

Didorong oleh permintaan dan keperluan yang besar, industri komunikasi telah 

berkembang pesat di seluruh dunia. Dengan pembangunan gentian optik 

berpenurunan rendah sebagai medium komunikasi optik yang utama, laser boleh 

ubah berkuasa tinggi dan lain-lain komponen tambahan yang berkaitan telah 

dibangunkan untuk dipraktikkan sebagai alternatif kepada sistem komunikasi 

elektrik. Bersempena dengan pertumbuhan permintaan data trafik yang pesat dan 

permintaan jalur lebar yang tinggi, rangkaian optik 2 µm telah diterokai. Dalam 

kajian ini, penjanaan laser gentian thulium-terdop disiasat dengan teliti terutamanya 

dalam penjanaan laser denyut. Laser gentian optik thulum-terdop Q-switched (Q-

switched TDFL) pasif telah berjaya dieksperimentasi dengan menggunakan penyerap 

tepu (SA) graphene sebagai Q-penukar dalam memodulasi penurunan intra-rongga 

yang dialami oleh sistem laser gentian optik. Dalam penjanaan Q-switched TDFL, 

dua konfigurasi sistem laser telah diset, rongga cincin dan rongga linear. Oleh itu, 

perbandingan prestasi laser dari segi kekerapan, kuasa output, lebar denyut, dan 

tenaga denyut akan berbeza mengikut setiap rongga laser. Selain itu, kesan tidak 

linear juga menyumbang kepada penjanaan Q-switched TDFL. Kesan-kesan ini 

boleh dilihat dengan jelas pada spektrum Q-switched TDFL yang lebih luas jika 

dibandingkan dengan spektrum laser gelombang berterusan (CW). Dalam kajian ini, 

empat set Q-switched TDFL menggunakan empat SA yang berbeza dalam rongga 

cincin telah disiasat manakala satu set Q-switched TDFL dalam rongga linear telah 

dieksperimentasi. Selain daripada itu, kajian ini juga memberi tumpuan kepada 

desain-desain penguat gentian thulium-terdop yang boleh digunakan pada masa akan 

datang dalam komunikasi optik. Seperti yang dinyatakan di atas, rangkaian optik 2 

µm telah menjadi minat dalam kalangan masyarakat komunikasi optik pada masa ini. 

Dalam kajian ini, penguat gentian thulium-terdop (TDFA) telah didemonstrasi 

melalui simulasi oleh OptiSystem v. 13. Satu peringkat TDFA berjaya didemonstrasi 

dan desain ini dibuat perbandingan dengan dwi-peringkat TDFA yang mengguna 

pakai teknik pengepaman teragih. Dalam konfigurasi dwi-peringkat, kuasa pam 

diagihkan kepada dua peringkat. Lima puluh peratus daripada kuasa pam digunakan 

di peringkat pertama manakala lima puluh peratus selebihnya digunakan di peringkat 

kedua. Selain itu, sebuah lagi desain iaitu tiga peringkat TDFA juga didemonstrasi 

melalui OptiSys dan desain ini telah dibuat perbandingan dengan dwi-peringkat 

TDFA mana kedua-dua TDFA mengguna pakai teknik peningkatan yang sama. Dwi-

peringkat TDFA telah terbukti berjaya menurunkan angka hingar dalam kira-kira 2 

dB. Semua TDFA telah disiasat dalam mencapai gandaan yang tinggi, kuasa output 

tinggi dengan angka hingar yang rendah.  
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  CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of the study 

 

 

Due to the rapid growth of communication technology and wide bandwidth 

internet demands, the optical communication has revolved into the next wavelength 

region that is the 2000 nm or 2 μm window (Richardson et al., 2010). In order to 

provide and offer applications in this window, the optical source in 2 μm has first to 

be generated. Following that, 2 μm optical communication can be realized. Prior to 

the invention of laser in 1960s (Maiman, 1960), the using of the electromagnetic 

spectrum for transmitting information has led to the generation of high power fiber 

laser as optical sources. It has been started after the first demonstration of 

neodymium-doped fiber laser in 1964 by Charles J. Koester and Elias Snitzer 

(Snitzer, 1964). After the invention of neodymium-doped fiber laser, Ytterbium-

doped fiber laser was introduced by Hanna et.al in 1988 to be applicable in 1 μm 

window (D. C. Hanna, 1988). It was Snitzer also who developed the first erbium-

doped fiber laser (Philippe C. Becker, 1999). Later on, laser source on 2 μm has been 

investigated and developed to be applied in such diverse fields; such as remote 

sensing, medicine, national defense, communication and other relevant fields. As in 

pursuit of compactness and reliability, thulium-doped fiber laser is considered as the 

suitable candidate (D. C. Hanna, 1990). 

Owing to the existing optical fiber transmission link which relies on erbium 

system, the research continues to explore the new region and as for that reason, 2 μm 

region is seen to be able to compensate the bandwidth capacity limit in 1.55 μm. 
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Research works and scientific experiments have mainly dedicated to works on the 

1.55 μm (N. Md. Yusoff, 2012) wavelength band as the existing Wavelength 

Division Multiplexing (WDM) technology lies mostly on this transmission window. 

These significant researches have been the interest because erbium-doped fiber 

(EDF) as the active gain medium has significantly viable to cover the C-, and L-band 

region (Yusoff et al., 2012). Therefore, the needs of going to a super broadband 

optical communication link and ever-increasing demands for high bandwidths have 

caught attentions in the 2000 nm window for long-reach transmission network 

system in the present and near future.  

Continuos wave and pulsed laser sources have started to be employed in a 

broad fields of application especially in the industrial sector which requires the 

compact, maintenance-free, low-cost, and efficient with high beam quality has made 

fiber laser the suitable candidate. In various industrial and scientific applications, 

continuos wave and pulsed fiber lasers are needed in the fields of material 

processing, bio-medicine, optical communication, spectroscopy, imaging and ranging 

(Canat, 2014). In specific, ultrafast fiber laser (Zhang, 2014), either mode-locking or 

Q-switching (Shi et al., 2014) have proven to deliver pulses in a short duration. 

In order to enable the 2 µm optical communication system, high quality 

optical amplifiers are required (Soref, 2015). Optical amplifiers are one of the most 

important devices in the WDM technology as they are crucial in amplifying input 

signal from the optical line terminal (OLT) to be transmitted through the optical link 

to the optical network unit (ONU). In WDM technology (Tanabe, 2015), EDFA is 

commonly used in order to meet the demand higher data capacity. Optical 

communication system, in its traditional ways has been using optoelectronic 

regenerators to convert optical to the electrical and then back to optical. The first 

introduction of erbium-doped fiber amplifier (EDFA) in 1987 has made a big change 

(Philippe C. Becker, 1999) in optical transmission system. Optical amplifiers will 

replace the electronic repeaters to boost up the signal power along the fiber span; all 

optical signals can be amplified simultaneously without the need of signal conversion 

within the EDFA in a single fiber. Therefore, the WDM technology has been a great 

interest in enabling the multi wavelength communication. Due to bandwidth 

limitation, thulium-doped fiber amplifier (TDFA) (Li et al., 2015, Heidt et al., 2014, 

Zhang et al., 2015) at 2000 nm is being introduced in these recent years. It is 

believed that the development and enhancement in the generation of ultrafast laser 
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source together with the thulium-doped fiber amplifier (TDFA) in the range 2 µm 

might be able to compensate the growing and demanding applications especially in 

the optical communication system.  

Today, in conjunction with the rapid growth of data traffic and high 

bandwidth demands, the exploration in 2 µm wavelength region is in the fast pace. 

This optical waveband lies in the range from ~1650 nm to 2100 nm (Ahmad, 2014). 

Researches and developments in 2 μm optical communication system have been 

rigorously done and still continued for the advantages and benefits offered for the 

sake of occupying the internet needs. With that, thulium-doped fiber amplifier 

(TDFA) is introduced these recent years for the applications as high performance 

optical amplifier in the future communication network system that will be operating 

at around 2 μm wavelength (Z. Li, 2013).  

 

 

 

 

1.2 Problem Statement 

 

 

The study concentrates on the characterization of the thulium-doped fiber as 

active gain medium to be applied on the 2 µm system. Due to the saturation of 

system applications in 1.55 μm region, future access generation is predicted to face 

the over demanding of high bandwidth and limited data traffic availability. Around 

the globe, the optical communication system relies on the Erbium-based system to 

transmit the optical signal through the terrestrial and undersea link transmission.  

Since the generation of actively Q-switched TDFL faces high cost due to the 

expensive active modulator, passive Q-switching is introduced as an alternative 

technique in establishing ultrafast pulse laser system. Another problem that crosses 

to mind which drives the research is that, there are various kinds of lasers that is 

made available in the industry as well as in the research and development activities. 

In this study, research works aimed on the generation of the passively Q-switched 

thulium-doped fiber laser as to make it competent with the pulse semiconductor laser 

that is actively modulated by active components. This is due to the nature of the fiber 

laser cavity that constitute only of fiber components. Furthermore, this study focus 

specifically on the development of Q-switched TDFL operating at new wavelength 

regime of 2 µm. Pulse generation in Q-switched TDFL employing saturable 
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absorbers (SAs) are studied. Besides that, the light beam quality is of the main 

concern as the light travels and routed to specific target in fiber optic. 

In order to set up an optical link, optical amplifier has found the extensive use 

in diverse applications ranging from the long undersea links to short links in access 

networks such as Metro Access Network (MAN) and Local Access Network (LAN). 

However, since EDFA has been widely used in optical communication network 

especially in the C- and L- band, TDFA is seen to be the best candidature (Li, 2013, 

Yamada et al., 2014) to be applied in the 2 μm optical communication link. 

Therefore, the design of the proposed TDFA has first to be verified to be made 

applicable in compensating optical loss suffered by the active gain medium in the 

specified region. Despite of having high gain in accomplishing the purpose of optical 

amplifier (for signal amplification), reducing the noise figure is one of the 

complement. High noise figure might distract and interrupt the signal propagation in 

the optical link. Low population inversion has also been the problem since it affects 

the degradation of the gain that will consequently affect the noise figure value. Here, 

noise figure reduction has the paramount concern prior to achieving higher gain in 

the proposed amplification system. 

 

 

 

 

1.3 Objectives of the study 

 

 

The objectives of the study are as below: 

 

i. To investigate and generate a stable Q-switched thulium-doped 

fiber laser (TDFL) at near 2000 nm wavelength region by using 

graphene-based and carbon nanotube-based saturable absorbers. 

ii. To develop thulium-doped fiber amplifier (TDFA) with 

distributed pumping technique. 

iii. To evaluate the performance of the Q-switched TDFL and the 

developed TDFA. 

 

 



5 
 

1.4 Scope of the study 

 

 

The task of achieving the research objectives have been divided into its perspective 

scope. The scope of the study is as follows: 

 

i. Designing the experimental setup of TDFL 

The experimental setup is designed with close similarity to any 

experiments involving fiber laser. All the passive components have been 

characterised. As for the doped-fiber, thulium-doped fiber (TDF) had 

been chosen as the active gain medium with 1552 nm laser diode to 

provide pump power to the whole laser system. The pumping scheme is 

chosen based on the energy level diagram of thulium (Tm
3+

) ions. 

ii. Characterisation of the fiber parameter 

At the initial stage, the TDF has been characterised. The Amplified 

Spontaneous Emission (ASE) spectrum is observed and recorded. The 

highest absorption peak on the ASE spectrum would determine at which 

wavelength the TDF will emit the highest gain. 

iii. Demonstration of the 2000 nm TDFL 

The experiment of TDFL is conducted and all the performance 

parameters of the TDFL were recorded to be analysed and discussed. 

iv. Design a simulation for TDFA 

For the simulation purpose, designs of the TDFA is constructed via 

simulation tool; OptiSystem version 13.0.1 provided by the Optiwave 

System Inc. 

v. Run the proposed design of TDFA 

Three designs of TDFA have been made. They are single stage, dual 

stage, and distributed pumping. All these designs were run via 

OptiSystem and the results obtained were solely from the software. 
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1.5 Thesis Outline 

 

 

This thesis comprises of five chapters. Chapter 1 provides the introduction to 

the problem and the topic. The research area is the fiber laser and fiber amplifier. It 

gives a brief description of the objectives and the scope of the study. 

Chapter 2 will go through the details of literature review and recent works 

done by other researchers related to the proposed work such as the very fundamentals 

of thulium ions energy level, important parameters of fiber laser and fiber amplifier, 

operating principle of Q-switched laser and fiber amplifier. Chapter 3 present the 

research methodology of this study. The experimental setups for the Q-switched 

TDFL and TDFA are presented here. Chapter 4 provides the whole description of 

generating Q-switched TDFL by using passive saturable absorber, (SA). Data 

collection for Q-switched TDFL is obtained from the experimental works conducted 

in Photonic Research Center (PRC) Universiti Malaya, Kuala Lumpur. Chapter 5 

presents the study of thulium-doped fiber amplifier (TDFA). The designs and the 

enhancement technique applied to the system to make it better is also presented in 

this chapter. Lastly, Chapter 6 presents the summary of this study and future work 

that can be explored in the related fields. The organization of the thesis is illustrated 

in Figure 1.1. 
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