HEAT DISTRIBUTION STUDY ON TURBOCHARGER TURBINE VOLUTE

MOHD IBTHISHAM BIN ARDANI

This thesis is submitted to the Faculty of Mechanical Engineering in partial fulfillment of the requirements for the award of the Master of Engineering (Mechanical)

> Faculty of Mechanical Engineering Universiti Teknologi Malaysia

> > JANUARY, 2012

To my dearly mother, father, wife and all other family members

ACKNOWLEDGEMENT

First and foremost I would like to express my greatest gratitude to my two supervisors of this project, which are Dr Srithar Rajoo and Prof. Amer Nordin Darus for the guidance during conducting this study. The continuous support, supervision and advice are highly appreciated. With the supervision, I gain abundance of knowledge that hard to find by books.

Also not forget to mention my fellow colleagues who willing to share some ideas which are related to this project. Also millions of thank you to Dr Khalid Saqr who guide me on giving FLUENT tutorials and comments on my simulation works.

Las but not least, I would like to acknowledge the support given by my family and those who contributed and involved directly or indirectly in this project.

ABSTRACT

The aimed of this project is to evaluate turbine's performance based on its actual condition. Holset H3B nozzles turbine geometry was used as simulation model. Turbine's actual working condition was simulated using common computational fluid dynamics analysis software which is FLUENT. Initial analysis was done by one-dimensional and two-dimensional analysis. Further investigation was done in three-dimensional with heat loss via turbine volute by the mode of convection. All the simulation results were compared with established data in order to confirm its validity. The parameters studied are corrected mass flow, turbine's efficiency at different heat cases, temperature distribution along turbine's volute and difference in temperature between inner and outer wall temperature. Temperature difference within turbine's volute is the major factor that deteriorates turbine's efficiency. Since turbine wall is thin, small temperature difference will result to high heat loss.

ABSTRAK

Analisis adalah bertujuan untuk menilai prestasi turbin berdasarkan keadaan sebenar. Geometri turbin model Holset H3B telah digunakan sebagai model simulasi. Keadaan kerja sebenar turbin disimulasi dengan menggunakan perisian analisis dinamik yang biasa iaitu FLUENT. Analisis awal telah dilakukan dengan analisis satu dimensi dan dua dimensi. Siasatan lanjut telah dilakukan dalam tiga dimensi dengan kehilangan haba melalui volut turbin oleh mod olakan. Semua keputusan simulasi dibandingkan dengan data simulasi dan ujikaji oleh penulis lain untuk mengesahkan kesahihannya. Parameter yang dikaji ialah perbetulan aliran jisim, kecekapan turbin pada kes-kes haba yang berbeza, suhu sepanjang volut dan perbezaan suhu turbin di antara suhu dinding dalam dan luar. Perbezaan suhu di dalam volut turbin adalah faktor utama yang menyebabkan kemerosotan kecekapan turbin. Disebabkan turbin mempunyai dinding yang nipis, perbezaan suhu yang kecil akan menyebabkan kehilangan haba yang tinggi. Pekali pemindahan haba juga memainkan peranan penting dalam menentukan kecekapan turbin. Semakin tinggi nilai pekali, olakan yang lebih kuat akan berlaku seterusnya menyebabkan kemerosotan kecekapan turbin.

TABLE OF CONTENTS

CHAPTI	ER
--------	----

TITLE

PAGE

	TITLE PAGE	i
	DECLARATION	ii
	ACKNOWLEDGEMENT	iv
	ABSTRACT	v
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	ix
	LIST OF FIGURES	х
	LIST OF SYMBOLS	xiv
1	INTRODUCTION	1
	1.1 Background of study	1
	1.2 Objectives	3
	1.3 Problems Statement	3
	1.4 Scope	4
	1.5 Methodology	5
2	LITERATURE REVIEW	6
	2.1 Introduction	6
	2.2 Turbocharger Turbine Map	10
	2.3 Heat Flow Path Analysis	17

	2.4 Non-Adiabatic Analysis For Turbocharger Turbine	20
	2.5 Simulation On Turbine Side	22
3	ANALYSIS OF RESULTS	26
	3.1 Model Simplification	26
	3.1.1 One-Dimensional Model	27
	3.1.2 Two-Dimensional Model	29
	3.2 Three-Dimensional Analysis	33
	3.2.1 Grid Independent Study and	
	Boundary Condition	36
	3.3 Corrected Mass Flow Analysis	39
	3.4 Efficiency Analysis	41
	3.5 Efficiency Analysis With Heat Loss	46
	3.5.1 Analysis of Case 1	49
	3.5.2 Analysis of Case 2	53
	3.5.3 Analysis of Case 3	56
4	DISCUSSION	57
	4.1 Introduction	57
	4.2 Discussion on Temperature Distributions At	
	Outer Wall of Turbine's Volute	57
	4.3 Discussion on Temperature Distribution At	
	Turbine's Volute Centerline	59
	4.4 Discussion on Temperature Difference Between	
	Inner and Outer Turbine's Wall	60
	4.5 Discussion on Turbine's Efficiency	63
5	CONCLUSION AND RECOMMENDATION	65
	5.1 Conclusion	65
	5.2 Recommendation	66
REFERE	NCES	67

Appendices A - C	69-72

LIST OF TABLES

FIGURE N	NO. TITLE	PAGE
3.1	Holset H3B nozzleless volute dimensions	33
3.2	Data extracted from (J. R. Serrano, 2007)	42
3.3	Air properties at 370°C	48
3.4	Air properties at 248°C	48
3.5	Case number with value of heat transfer coefficient	48
3.6	Temperature distribution (vector and contour plot)	51
3.7	Temperature distribution (vector and contour plot)	54
4.1	Comparison of temperature distribution along outer wall	58
4.2	Comparison of turbine's centerline temperature	59
4.3	Comparison of temperature difference between inner and outer	
	turbine's volute wall	60

LIST OF FIGURES

FIGURE NO	. TITLE	PAGE
1.1	Operation of a turbocharger	2
1.2	Methodology for heat distribution study on turbocharger tur	bine volute
		5
2.1	Variation of non-dimensional density, pressure and tempera	ture
	to sea level	7
2.2	Heat losses around turbine volute	8
2.3	Overdrive condition	8
2.4	Typical turbine performance maps	11
2.5	Turbine performance map	12
2.6	Turbine map with mass flow parameter and turbine efficience	су
	for several PR range	15
2.7	Turbine efficiency for several PR at different turbine inlet	
	temperature	15
2.8	Turbine efficiency at different turbine's rotational speed	
2.9	a) H-s diagram	
	b) Turbine volute, pressure inlet-outlet location	17
2.10	Mechanism of heat transfer within turbocharger components	s 18
2.11	Heat flow path in turbocharger	19
2.12	Heat flow path in turbocharger	19
2.13	Measured and simulated turbine inlet/outlet temperature	21
2.14	Difference between inner and outer wall temperature based	on

	specified turbine inlet temperature	22
2.15	Extend of modelling for certain types of turbulent models	25
2.16	Turbine with domains extension	25
3.1	a) Actual turbine area	
	b) Simplified model of turbine volute	27
3.2	a) Simplified model of turbine volute	
	b) Boundary condition at volute wall for 1-D analysis	28
3.3	Temperature difference from 1-D analysis	29
3.4	Boundary condition of simplified converging nozzle for 2-D	
	analysis	30
3.5	Boundary condition for 2-D analysis	31
3.6	Temperature contour from 2-D analysis	32
3.7	Temperature difference between inner and outer of turbine	
	volute wall	32
3.8	Holset H3B nozzleless volute	33
3.9	Model deviation	34
3.10	a) Turbine volute model in SOLIDWORKS	
	b) Meshed model of turbine volute in GAMBIT	35
3.11	Flow chart of simulation work	36
3.12	Grid independent study of corrected mass flow	37
3.13	Grid independent study of Reynolds number	37
3.14	Types of boundary condition for simulation	38
3.15	Simulation of corrected mass flow rate	39
3.16	Comparison of non-dimensional corrected mass flow rate	40
3.17	Inlet and outlet temperature at certain pressure ratio	41
3.18	Deviation of turbine actual power with isentropic power	43
3.19	Turbine's adiabatic efficiency	43
3.20	Comparison of adiabatic efficiency	44
3.21	Non-dimensional efficiency versus pressure ratio	44
3.22	Non-dimensional efficiency versus non-dimensional mass	
	flow rate	45

3.23	Air flow around turbine's volute	
3.24	Azimuth angle around turbine's volute	49
3.25	Temperature vector with actual grid	50
3.26	Temperature distribution at different pressure ratio	50
3.27	Temperature distributions along turbine volute centreline	52
3.28	Temperature difference between inner and outer wall	52
3.29	Turbine's non-adiabatic efficiency	52
3.30	Temperature distribution at different pressure ratio	53
3.31	Temperature distributions along turbine's volute	
	Centreline	55
3.32	Temperature difference between inner and outer wall	55
3.33	Turbine's non-adiabatic efficiency	55
3.34	Turbine's non-adiabatic efficiency	56
4.1	Difference of temperature between inner and outer turbine's	
	volute wall with external ventilation and without external	
	ventilation	61
4.2	Comparison of efficiency for different cases	63

LIST OF APPENDIX

APPENDIX	TITLE	PAGE
А	Two-dimensional code in MATLAB	69
В	Simulation data for Case 1, 2 and 3	71
С	Sample calculation of heat transfer coefficient for Case 3	72

LIST OF SYMBOLS

А	-	turbine's volute external area
C_p	-	air specific heat
h _{ext}	-	exhaust flow heat transfer coefficient
h_{amb}	-	ambient heat transfer coefficent
k	-	ratio of specific heat
Κ	-	thermal conductivity
• m	-	mass flow rate
• m _{corr}	-	corrected mas flow rate
\mathbf{P}_{in}	-	turbine inlet pressure
Pout	-	turbine outlet pressure
$\mathbf{P}_{\mathrm{ref}}$	-	reference pressure
PR	-	pressure ratio
Q _{ext}	-	external heat loss
Q_{cond}	-	heat loss through conduction mode
Q_{conv}	-	heat loss through convection mode
Q_{rad}	-	heat loss through radiation mode
T _{in}	-	turbine inlet temperature
T _{out}	-	turbine outlet temperature
T _{inner}	-	turbine inner wall temperature
T_{outer}	-	turbine outer wall temperature
T_{∞}	-	ambient temperature

T_{ref}	-	reference temperature
V_x	-	velocity in x-direction
V_y	-	velocity in y-direction
V_z	-	velocity in z-direction
W _{act}	-	actual turbine work
Wisen	-	isentropic turbine work
ho	-	air density
μ	-	air viscosity
η	-	turbine's efficiency

CHAPTER 1

INTRODUCTION

1.1 Background of the study

Nowadays, demand on powerful engine has increased enormously due to the ability of the engine to produce rapid acceleration. Power up engine is a method of increasing engine power beyond the ability of normal stock engine. There are several ways to power up engine such as, having bigger cylinder, which mean by increasing the size of bore and stroke, supercharger and turbocharger. Some of these devices assist engine to induce more air into intake manifold. Apparently, the least expensive, easy to main yet producing good output to vehicle is by having a turbocharger.

By the aid of turbocharger, engine can produce more power at the same speed of Naturally Aspirated (NA) engine. Technically speaking, turbocharger forcing more air into combustion chamber thus, this will increase and improve volumetric efficiency (Crouse and Anglin, 1993).

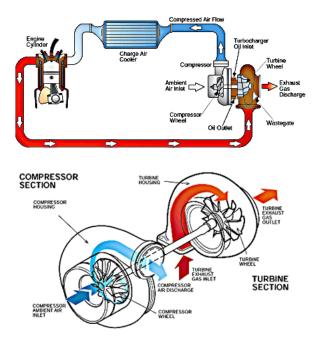


Figure 1.1 Operation of a turbocharger (Source: http://conceptengine.tripod.com)

In turbocharger system as illustrated in Figure 1.1, there are two main parts, which are compressor and turbine. Turbine acts as centrifugal air pump, which is driven by exhaust gas while compressor induced air, compressed it and forced the air to combustion chamber. Both of the parts are connected via main shaft, which is turned by turbine by the flow of exhaust gas that strike turbine's blade. The rotation speed of turbine depends on the speed of high temperature exhaust flow and normally it can achieve to more than hundred thousands RPM. Heat is distributed throughout the whole turbocharger components due to different of temperature between parts. Some of the heat loss through convection to ambient and some of the heat are conducted through components. Heat losses will deteriorate turbocharger performance and specifically on turbine side. Since turbine volute has larger area exposed to ambient, thus it acts as a main source of heat loss.

The main purpose of this research is to study of the temperature and heat distribution at turbocharger turbine's volute. This study will be focused on the temperature variation at the turbine volute. The investigation on heat flow throughout turbocharger components is well studied in this project. The author has made several literature reviews in this topic, which will be discussed in great details after this. Consequently, the author will develop simplified model of turbine volute in one-dimensional and two-dimensional and verified with experimental works. Furthermore, a three-dimensional model is made which mimics the real process that occurs at turbine volute. The analysis will be conducted by MATLAB and FLUENT.

1.2 Objective

To identify the effect of heat distribution and heat transfer within a turbine volute that influences a turbocharger performance.

1.3 Problems Statement

The problem statements for this thesis are

- a) Heat loss can be portrayed as lost of energy that can be utilized.
- b) Heat loss due to heat transfer should be reduced or minimized to obtain optimum work transfer.
- c) Investigation or study of heat distribution is deemed necessary to capture the phenomenon of heat transfer that occurs.

1.4 Scopes

The scopes for this thesis are

- a) Initial analysis will be based on numerical calculation in MATLAB
- b) Three-dimensional model will be created in FLUENT
- c) Volute modelling is based on HOLSET H3B nozzle less volute
- d) Only steady state simulation will be conducted

1.5 Methodology

Methodology that have been created is applied throughout this research on the simulation model as showed in Figure 1.2:

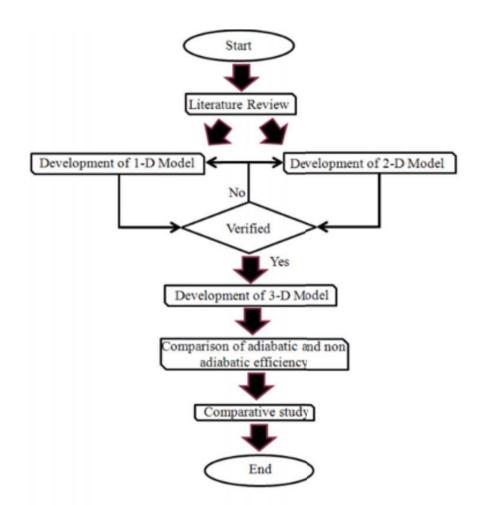


Figure 1.2 Methodology for heat distribution study on turbocharger turbine volute