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 Nowadays, computer virus attacks are getting very advanced. New 

obfuscated computer virus created by computer virus writers will generate a 

new shape of computer virus automatically for every single iteration and 

download. This constantly evolving computer virus has caused significant 

threat to information security of computer users, organizations and even 

government. However, signature based detection technique which is used by 

the conventional anti-computer virus software in the market fails to identify 

it as signatures are unavailable. This research proposed an alternative 

approach to the traditional signature based detection method and investigated 

the use of machine learning technique for obfuscated computer virus 

detection. In this work, text strings are used and have been extracted from 

virus program codes as the features to generate a suitable classifier model 

that can correctly classify obfuscated virus files. Text string feature is used as 

it is informative and potentially only use small amount of memory space. 

Results show that unknown files can be correctly classified with 99.5% 

accuracy using SMO classifier model. Thus, it is believed that current 

computer virus defense can be strengthening through machine  

learning approach. 
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1. INTRODUCTION  

Malicious software (malware) is specifically designed by computer virus writers to exploit 

vulnerabilities and infect the PC without the users’ consent. It is commonly used by the hackers to steal 

confidential user information for illegal purposes [1]. Malware including computer viruses, worms and 

trojans can be easily transported over network by email or through removable media. When users visit 

websites containing exploit code, they may accidentally download and install malware into their PC [2]. 

Nowadays, computer virus has become more complex as new computer virus variants are constantly evolved 

from old computer virus and their internal functions are modified across generations [3]. This has made the 

computer virus detection process very difficult. Obfuscated computer virus such as metamorphic and 

polymorphic are created to bypass the most popular computer virus detection approach which is signature 

based method. This technique identifies unique sequences of bytes or strings as signature, just like a 

fingerprint of the virus [4]. However, this kind of computer virus does not contain a specific signature in the 

code. It will just increase the database list with unnecessary signatures when storing new signatures of each 

computer virus variant into the database. 

To overcome the limitation of signature based detection method, machine learning is proposed to 

detect obfuscated computer virus. This has been proven by C. Richardson [3] which applied machine 
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learning technique in detecting unknown computer virus. Machine learning (ML) is generally focused on 

learning from past experience to classify and predict future data based on the similarity with the training data. 

Basically, this approach will need to do some data mining, statistical analysis and data aggregation 

(classification). In this paper, text strings are used and have been extracted from virus program codes as the 

features. It was believed that text strings can retrieve full information of the program while using small 

amount of memory address, which results in faster runtime. Therefore, this technique can effectively detect 

unknown computer virus based on their pattern similarities. 
 

 

2. LITERATURE REVIEW 

2.1.  Overview 

Computer virus detection is very important as it is generally considered as the first step in computer 

virus defense. As shown in Figure 1, there are 3 types of computer virus detection analysis, which are static, 

dynamic and hybrid analysis. For this work, it can be categorized into static analysis and the similarities of 

patterns are analyzed through downloaded files [5-6]. Static analysis is done by analyzing the source code 

generated by reverse engineering tools like disassemblers or debuggers to study how the computer virus 

operates [7]. It can be divided into two: signature based and non-signature based. Signature based method is 

one of the most popular way to detect computer virus in the world. It relies on the identification of unique 

sequences of bytes (strings) as signature, just like a fingerprint of the virus [4]. While for non-signature 

based, one of the approaches exists is ML technique. It detects computer viruses by observing the patterns of 

the computer virus, extract them as features and train the features to generate classifier models. Various kinds 

of classification models can be generated using different ML algorithms for example Naïve Bayes, 

Sequential Minimal Optimization (SMO) and J48. Naïve Bayes algorithm uses probability of every feature 

independently and makes prediction using Bayes Theorem. The advantage of this method is the irrelevant 

features which have low probability will not be taken into consideration when making prediction [8]. 

Sequential Minimal Optimization (SMO) is widely used in Support Vector Machine (SVM) training to solve 

for quadratic programming optimization problem. It can handle a large size of training sets as memory 

needed is linear in the training set size [9]. J48 uses training sets for creating decision tree and makes 

prediction based on the tree. It is quite popular to be used due to its simplicity and the “open” decision 

making process that clearly shows users which decisions lead to the outcome [8]. 

Dynamic analysis is based on the information retrieved from the operating system during the 

execution of the program [10]. The program is usually executed and monitored either in a real or virtual 

machine environment such as in the sandbox and its behavior is being observed [11]. It can be much faster 

and accurate, while giving control and data flow information [11]. However, it is difficult to have suitable 

conditions where the malicious code will be triggered or activated other than to identify the time required for 

observing the appearance of malicious activity [10]. Hybrid analysis is the combination of static and dynamic 

analysis. Siddiqui [12] had proposed an anomaly based technique where hybrid analysis was used to detect 

obfuscated code. In this technique, static analysis was used to locate the system calls in the program while the 

program is dynamically monitored later. Islam and Altas [13] had used three different feature set in their 

study. API parameters are used as dynamic features whereas function length frequency and printable string 

information as static features. Using 2398 malware executable files, they had tested the experiments using 

four different ML algorithms such as Support Vector Machine (SVM), Decision Tree (DT), Random Forest 

(RF), Instance-based with boosting techniques (IB1) and they found out that RF shows the best performance 

in classifying the data. 
 

 

 
 

Figure 1. Overview of computer virus detection analysis 
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2.2. Related works 

Obfuscated computer virus uses a combination of various code obfuscation techniques to avoid 

detection, or example Garbage Code Insertion. The obfuscated virus will keep inserting trash instructions like 

NOP at random places in the code to make the virus body looks different in each generation [14]. In other 

words, a single computer virus can produce thousands of new variants with different fingerprints [15]. 

Therefore, storing signatures of each computer virus variant is not practical as it just increase the database list 

with unnecessary signatures. 

Schultz et al. [16] were the pioneers to introduce ML in computer virus field using binary codes to 

detect new malware. Extracted system resource information, strings and byte sequences from malicious 

executable are used as features. Byte code or byte sequence in form of n-gram has been used in ML 

classification [17-18]. However, due to the large data size, more features are created, causing memory 

overhead and slowing down the runtime of the classification process [8]. 

In order to solve the limitation of byte code, opcode (short for operational code) is introduced to 

improve the performance. It is retrieved from the assembly format which consists of opcode and operands 

[19]. The operation of opcode can be arithmetic, program control, logical operations and data manipulation 

[10]. There are two main techniques to perform disassembling process from executable into assembly codes 

such as linear sweep and recursive traversal algorithm. According to Ahmadi et al. [20], recursive traversal 

algorithm is less susceptible to mistakes as the code is disassembled based on jump and branch instructions. 

For example, Interactive Disassembler (IDA Pro) tool [21] utilizes cross-reference between code sections, 

parameters of API calls and other information to perform automatic code analysis on binary files. As the 

model is trained on disassembled virus executables, the quality of the disassembler may affects the results 

[22]. Other than that, since it just retrieves part of the program, it may miss some important information of 

malicious code [23]. But the computation time is faster as the data size is smaller.  

In this project, we extract text strings as the features in machine learning classification. It can 

retrieve full information of the program while using smaller amount of memory address, which results in 

faster runtime. WEKA [24] is used as the workbench for developing our approach and doing the analysis on 

computer virus detection. However, as both opcode and string are using assembly format dataset, they may 

have the risk that some executable files cannot be disassembled properly. Figure 2 shows an overview for 

static analysis techniques with different type of features. 

 

 

Machine Learning (ML) 

 
 

Figure 2. Overview of signature based and non-signature based detection method (ML) 

 

 

3. RESEARCH METHOD  

3.1.  Pre-processing data 

Figure 3 shows the data processing flow of datasets before analysing using machine technique. First, 

computer virus collections are collected from online computer virus repository such as VXHeaven [5] and 

Das Malwerk [6]. While assembly codes are collected from assembly tutorials websites and Windows 

Executable files as normal collections. The distribution of raw datasets collected is shown in Table 1. 

Computer virus collections will be used as training set and some of them will be obfuscated and be used as 

testing set. Since string feature is used, these executable files were disassembled into assembly codes using 

IDA Pro Disassembler Software [21] for the ease of feature extraction as shown in Figure 4. 

Perl script is used to filter unwanted information in the assembly codes. This script will read all 

assembly files in a directory and save as text format with the same name in another directory. When 

processing a file, it will remove all comments, empty spaces or lines and replace multiple spaces with a 
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single space. Every processed file will contain sequence of strings and each string is gapped with a single 

space as shown in Figure 5. 
 

 

Table 1. Distribution of raw datasets 
Raw Datasets Total 

Virus sets 150 

Normal sets 150 

 
 

 

 
  

Figure 3. Data processing before entering 

machine learning tool 

Figure 4. Disassembling process 

 

 

3.2. Learning phase 

According to Figure 5, it shows the process taken to train the classifier models with training sets. A 

total of 300 datasets equally divided by both computer virus and normal files are used as the training sets. 

Using some functions in ML tool [24] i.e TextDirectoryLoader and StringToWordVector, Attribute-Relation 

File Format (ARFF) file is created both for training and testing set. By using the generated ARFF file, ML 

algorithms such as Naïve Bayes, SMO and J48 can train and generate different types of classifier models. 

 

3.3. Classification phase 

The flow for classification phase in machine learning is shown in Figure 6. The performance of 

these classifier models can be tested with cross-validation method. In this work, 10 fold cross-validation is 

chosen. Basically, this technique will split the training sets into several partitions according to the number of 

folds. For this case, the classifier models will be tested by setting the first fold as test set and the remaining 

nine folds as training set. Then, the same process is done by using the next fold as test set until tenth fold. 

Based on the similarity in its features with the trained model, each classifier model will predict which class 

the unknown dataset belongs to. The best classifier model will then be chosen after analysing the 

performance for different classifier models. 

To test the functionality of the system on obfuscated computer virus, OWASP-ZSC Obfuscated 

Code Generator tool [25] is used to obfuscate 25 viruses from the training sets. These obfuscated virus files 

are processed and filtered into text files using the same approach as the pre-process of virus set previously. 

When the virus set is obfuscated, the file size will become bigger. This means that some exploits or garbage 

codes have been thrown into the code during the obfuscation process. By using WinMerge [26], the 

difference of virus file before and after obfuscation can be seen in assembly format as shown in Figure 7. A 

big paragraph of garbage code or exploits has been added into the obfuscated virus file at the left side 

compared to the original virus file at the right side. Then, a collection of unknown datasets consist of virus 

sets, obfuscated virus sets and normal sets are keyed into machine learning as test sets as shown in Figure 6. 

The performance of the proposed system is analysed to see whether it has improved the computer virus 

detection compared to the traditional signature based method from VirusTotal [27].  

 

3.3. Evaluation metrics 
Using ML tool [24], the performance of each generated classifier model is evaluated through four 

metrics. True Positives (TP) represents the correctly identified virus programs while True Negatives (TN) 

represents the correctly identified normal programs. False Positives (FP) represents the normal programs that 

were incorrectly identified as virus programs while False Negatives (FN) represents the virus programs that 

were incorrectly identified as normal programs. Accuracy (ACC) is the percentage of correctly identified 
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programs. The concern for TP here is that for computer security, it should not be compromised with virus 

files that can spread to the systems. FP also plays an important role in our verification because we need to 

reduce the number of normal files that were wrongly classified as viruses. As conclusion, high TP and less FP 

(high TN) indicate good performance for the algorithms 
 

 

 
 

  

Figure 5. Learning phase in ML Figure 6. Classification phase in ML 
 

 

 
 

Figure 7. Comparison of virus files after and before obfuscation 

 

 

4. RESULTS AND ANALYSIS 
Figure 8 shows the virus file set obtained after doing the data filtering using Perl script. Compared 

to the normal set, the content of virus set is much larger which causes more memory size is needed. Besides, 

virus set consists a lot of special character like “?” when allocate memory space for initialized data in the 

program. Each processed text files contain strings that gapped with a single space. This will help to 

differentiate the string features and extract them out when the files are fetched into the ML tool.  
 

 

 
 

Figure 8. Processed virus set 
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During the learning phase, the performance factors for respective classifier models are extracted and 

listed out as shown in Table 2. Based on the experiment, SMO classifier model shows the best performance, 

which achieves 98% accuracy in classification. Besides, the overall time taken to build model and model 

testing on training data is ranked at first among all classifier models. Therefore, SMO classifier model is 

chosen as the most suitable model to undergo obfuscated computer virus detection 

 

 

Table 2. Performance factors of classifier models 
Classifier model Time to generate model (s) Testing time (s) Acc (%) 

Naïve Bayes 0.05 0.19 94.33 

SMO 0.08 0.08 98 
J48 0.16 0.01 96.67 

 

 

In this work, 25 virus executable files are extracted from the training set to undergo obfuscation 

process using Obfuscated Code Generator Tool [25]. These files are uploaded to VirusTotal website [27] to 

check whether they can avoid the detection from anti-virus softwares which use signature based detection 

method. After obfuscation, these files are considered as unknown files by VirusTotal and it will generate a 

new SHA-256 for the files as shown in Figure 9.  

 

 

 
 

 

Figure 9. Result from VirusTotal for a virus file (after obfuscate) 

 

 

 
 

 

Figure 10. Virus total result on virus files 
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Next, the results from VirusTotal [27] for 25 virus files before and after obfuscation are analyzed 

and compared as shown in Figure 10. These results can be obtained using (1). Before the obfuscation, the 

highest percentage for anti-virus engines that can detect it as virus file is 86.57% and the lowest is 65.08%. It 

can be seen clearly that the average percentage for virus sets before obfuscate to be detected is quite high 

since VirusTotal which use signature based detection method can detect the signature in the virus files. 

However, the signature is missing once the virus files are obfuscated, which will cause a significant decrease 

in computer virus detection. Among 25 obfuscated virus sets, the highest anti-virus engines that consider the 

file harmful is only 12 out of 56 (21.43%) while some of the virus files are even successfully avoid the 

detection and being detected as normal or safe files. This means that the conventional anti-virus engines in 

the market may have the risk to pass through obfuscated virus and infect the PC without users’ consent. 

           

                              
                                     

                                   
 (1) 

 

Then, 5 test sets are created with a mixture of normal sets, virus sets and obfuscated virus sets. In 

each test set, it consists of 20 normal files, 15 virus files and 5 obfuscated virus files. By using ML tool [24], 

the classification result of test set 1 on SMO classifier model is shown in Figure 11. Same approach is done 

for the remaining 4 test sets and the classification results are analyzed.  

 

 

 
 

Figure 11. Summary test set 1 classification result on SMO classifier model 

 

 

According to the confusion matrix in Figure 11, it shows that there are 20 correctly identified 

instances for normal files (TN) and 20 correctly identified instances for computer virus (TP). This means that 

SMO classifier model can correctly classify all the instances with 100% accuracy even though the test set 

consists of obfuscated virus files. Same approach is done for the remaining test sets and the classification 

results are listed in Table 3. From the table, it can be seen that most of the test sets with obfuscated computer 

virus can be classified well. From this result, there is only 1 out of 25 obfuscated virus files wrongly 

identified as normal based on the 5 test sets, which comes out with 99.5% accuracy in average. 

 

 

Table 3. Classification result on SMO classifier model 
Test set TP TN ACC (%) 

1 20 20 100 

2 20 20 100 

3 19 20 97.5 
4 20 20 100 

5 20 20 100 
Average 99.5 

 

 

5. CONCLUSION 
As a conclusion, an obfuscated computer virus detection system has been developed using machine 

learning technique using strings as features. In this work, various classifier models have been generated and 

their performances are analysed and compared. The results show that SMO classifier model can classify the 
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obfuscated computer virus well with the promising performance. This method can compensate and overcome 

the limitation of signature based computer virus detection and help to fight the rising of obfuscated computer 

virus which has brought up many serious cases nowadays like Ransomware Attack. To further improve the 

system, heap memory size can be adjusted so that more training sets can be used to train the classifier model. 

Choosing a better obfuscated code generator tool may also help to generate smaller obfuscated virus files and 

reduce memory overhead. In future, it can be used as the groundwork for the real-time implementation of 

computer virus detection at hardware level i.e Field Programmable Gate Array (FPGA). 
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