
Ecological Indicators 124 (2021) 107317

Available online 19 February 2021
1470-160X/Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Multifunctional retention pond for stormwater management: A 
decision-support model using Analytical Network Process (ANP) and Global 
Sensitivity Analysis (GSA) 
Ali Keyvanfar a, Arezou Shafaghat a,b,c,*, Nurhaizah Ismail d, Sapura Mohamad d, 
Hamidah Ahmad d 

a Department of Construction Management, College of Architecture and Construction Management, Kennesaw State University, Marietta, GA 30060, USA 
b CIFAL Atlanta, the United Nations Institute for Training and Research, Marietta, GA, 30060, USA 
c Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam 
d Department of Landscape Architecture, Faculty of Built Environment, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia   

A R T I C L E  I N F O   

Keywords: 
Multifunctional retention pond 
Water-sensitive urban design and planning 
Stormwater management 
Decision-support model 
Analytical Network Process (ANP) 
Global Sensitivity Analysis (GSA) 

A B S T R A C T   

The ever-growing impervious and contaminated surfaces in urban areas result in severe floods, degraded wa-
terways, and stormwater. Water-sensitive strategies and water-sensitive urban design and planning can manage 
stormwaters through multifunctional retention ponds; however, urban professionals seek an assessment model 
that evaluates and quantifies the performance of multifunctional retention ponds on stormwater management. 
This research has developed the Urban Retention Pond Index (URPI) assessment model, a universal multi-layered 
decision-support tool that constitutes three criteria (C1. Geotechnical functions, C2. Water quality and treatment, 
and C3. Structural and physical landscaping functions), and twenty sub-criteria. Employing Analytical Network 
Process (ANP) has determined the weights of indicators, which formulated the URPI index. The ANP result 
indicated soil investigation (WC1.1 = 0.170), soil retention (WC2.1 = 0.156), and infiltration rate (WC1.2 = 0.108) 
could extensively impact to the performance of multifunctional retention ponds. To validate the model, it was 
implemented in the Boneyard Creek retention pond using the Weighted Sum Method. The assessment analysis 
assigned grade A to this site, meaning, Boneyard Creek pond manages stormwater mainly through Soils Inves-
tigation (WC1.1 = 0.150), Soil retention (WC2.1 = 0.144), and Infiltration Rate (WC1.2 = 0.091). Furthermore, 
Global Sensitivity Analysis (GSA) was conducted to analyze the URPI model’s input–output uncertainty and 
effect of variations, through a series of methods; Cumulative Distribution Functions (CDF), Probability Density 
Function (PDF), Scatterplot-Histogram Plot, Box-Whisker Plot, and Parallel Coordination. GSA could support the 
dominant controls and robust decision-making of the URPI model. GSA results determined that model outputs are 
empirically distributed with minor regression variance to the theoretical distribution. Most of the outputs fall 
within the intervals where the mean and median are more significant than the mode. The multiple regression 
analysis has shown that the three criteria are positively and linearly correlated. The Box-Whisker plots revealed 
the behaviors of the four mentioned measures are similar. Notably, the Box-Whisker standard error plots indi-
cated the minor errors of the outputs in the whole network of the URPI model. Meanwhile, the Parallel Coor-
dination indicated the largest centrality degrees by the spillway and landscape habitat retention sub-criteria and 
the largest Eigenvector centralities by soil retention and soil investigation sub-criteria in the whole network.   

1. Introduction 

The world faces a water crisis based on the World Water Council 
report, not because of the amount of water, but due to its management 

that is particularly affected severely by the environment and population 
(UN-Water, 2016). Water health management and urban water man-
agement play critical roles in providing quality water resources and 
protecting urban population health worldwide; for instance, the Healthy 
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Cities movement initiated by Canada in 1984 and approved by WHO 
(World Health Organization), which is promoting the water health 
management worldwide since 1986 (Ashton et al., 1986). Also, the 
Sustainable Development Goals (SDGs) were released by the United 
Nations over the local and global dynamics of water usage and water 
availability (Bhaduri et al., 2016). In particular, SDG112 and 
SDG61emphesize sustainable urban water management for resilient 
cities (Pusalkar et al., 2020). Integrated Urban Water Management 
(IUWM) supports the drinking water planning and implicates sustain-
able development goals (SDGs) (including waste management, nutrient 
losses, Greenhouse Gas emission reduction, energy generation, life cycle 
costs, etc.). Purposefully, a new paradigm of water management in-
frastructures and policies was developed as the Urban Water Strategies, 
motivating a broader collaboration of stakeholders, citizenship, and 
governance. The urban water strategies can manage climate variability, 
population growth challenges, and uncertainties through technocratic 
and engineering solutions while maintaining ecological and social 
values (Shafaghat et al., 2017; Buurman and Padawangi, 2018; Kösters 
et al., 2020). On the other hand, these strategies can significantly control 
climate change, impacting the cities by natural disasters, such as floods, 
typhoons, storms, heatwaves, or through gradual ruins, such as weather 
changes, microclimate change, temperature increase, sea-level rise, and 
so on. 

In the past few decades, different terms have been used for water 
management, such as water-sensitive city, Water Sensitive Urban Design 
(WSUD), Sustainable Urban Drainage Systems (SUDS), Green Infra-
structure (GI), Low Impact Development (LID), and Stormwater Best 
Management Practices (BMPs) (Lerer et al., 2015). The water-sensitive 
city is under the umbrella of sustainable urban water management 
and urban water security. The water-sensitive city is also dominant in 
Climate Sensitive Urban Design (CSUD, known as Climate Responsive 
Design or Bio-climatic Design-CRDBD). CSUD is a bio-climatic design 
seizing harmony in nature and a mechanism for the human thermal 
comfort in urban and building scales. The water sensitive city has three 
key drivers (Wong and Brown, 2009); including 1) developing varieties 
of water sources development in which the city resilience is promoted 
through different and independent water recourses while minimizing 
water loss, such as recycled wastewater/stormwater and rainwater 
harvesting, 2) developing urban ecosystem services in which the water 
resilience of the city needs specific rules and regulations, technologies 
and urban design standards for using the green infrastructure properly 
and 3) strengthening the institutional capacities to enable the cities for 
the transition of water-sensitive urban development through a new 
culture across multiple parties, which can guarantee the successful 
implementation of new socially-wised technologies, strategies, and 
policies for the environment and ecosystem preservation. Meanwhile, 
the natural hydrological recovery problem is deemed to the regional 
performance through the concepts of Water Sensitive Urban Design 
(WSUD) (Melbourne Water Authority, 2017; U.S. National Research 
Council, 2009), Low-Impact Urban Design and Development (LIUDD) 
(Ignatieva et al., 2008). These concepts are practically implemented in 
several large-scale urban planning projects, say the City Council of 
Oakland and Canada, establishing water-saving urban design 
(Wellington City Council, 2020). Also, De Urbanisten-Turenscape 
Landscape Architecture has used these concepts for water and green 
systems creation (Kazantsev et al., 2020). 

In particular, incorporating WSUD provides the water-sensitive 
streetscapes, water visible within the urban landscape, and urban 
forms, which consequently supports the sustainable urban environment 
(Smith et al., 2020). WSUD is also commonly known as Sustainable 
Urban Drainage Systems (SUDS) in UK and Low Impact Development 
(LID) in the USA. The mechanism of WSUD supports the Climate Sen-
sitive Urban Design (CSUD) by promoting local-scale and microclimate, 
surface cooling, and evapotranspiration while limiting Urbanheat Island 
(UHI) intensities (Coutts et al., 2013; Taslim et al., 2015). WSUD is also a 
paradigm that focuses on providing innovative, informative, and 

engaging landscape design solutions within communities and neigh-
borhoods (Wong, 2006) that is increasingly used in both urban renewal 
developments and new urban greenfield development. Specifically, 
WSUD copes with stormwater management through treatment, collec-
tion, and storage of stormwater via wetlands, porous pavements, bio- 
swales rainwater tanks, and vegetated bio-retention systems (Fletcher 
et al., 2008). WSUD comprises a few key principles (Wong, 2006; Key-
vanfar et al., 2014; Kamyab et al., 2016) as follow; 

i. using the water-efficient appliances to reduce potable water de-
mand and pursuing alternative water sources (e.g., treated 
wastewater, treated rainwater),  

ii. reducing wastewater generation while improving wastewater 
treatment to the standard level and reusing opportunities at 
buildings,  

iii. improving the stormwater treatment to the standard level for 
discharging or reusing the surface waters, and  

iv. maximizing the recreational visual amenity of the environment 
and urban landscape by integrating the infrastructure of the 
stormwater and water cycle management to urban design. 

WSUD is also known as stormwater best management practices 
(BMPs) in the United States (USEPA, 2009), and Sustainable Urban 
Drainage Systems (SUDS) in the United Kingdom (Duffy et al., 2013). In 
this case, BMPs have different types, including  

i. BMPs for urban land-use practices, in which common land-use can 
control the runoff quality and quantity. The most well-known prac-
tice is higher density development with lower runoff per housing, 
which serves social, environmental, and economic goals (Carmon 
and Shamir, 2010). USEPA (2009) has reported that the low-density 
land-use produces 3.8 times more runoff per housing unit than the 
high density and 3.0 times more than the medium density. High- 
density areas can protect regional water quality better than low- 
density areas (Carmon and Shamir, 2010). Hence, the mixed land- 
use is appreciated by the minimum area for sidewalks, streets, and 
parking lots  

ii. BMPs for the land cover design in which it is a mean for transforming 
up to 90% runoff from rainfall generated by rainstorm events into a 
water resource. It has an acceptable level of contamination used for 
irritation and landscaping purposes or recharging the groundwaters 
(Carmon and Shamir, 2010). This stormwater infiltration approach is 
highly recommended in countries with limited water resources for 
recharging groundwater, especially in semi-arid countries. 

Water Sensitive Planning (WSP) is an approach parallel to WSUD 
with a broader view considering water management through urban and 
regional planning. Similar to WSUD, WSP supports synergistically sus-
tainable development and construction. The primary principle of WSP is 
to replace open spaces according to the natural hydro-geographic layout 
within a natural stream system through the retention and detention of 
stormwater (Musiake et al., 1999; France, 2002). The replacement 
planning needs to be started by spatial planning before land-use plan-
ning. The open spaces have different roles and functions in a city 
(including air-refresher, stormwater receptors, flood mitigator, runoff 
infiltrator, leisure activities, etc.); hence, they have diverse forms and 
sizes from the private yard to large parks (Burmil et al., 2003). WSP 
might manage the stormwaters of the open spaces by serving as land-
scape elements or by irrigation purposes (Burmil et al., 2003). 

Currently, stormwater management through flood control or water 
quality improvement is performed (Proverbs et al., 2008). Stormwater 
harvesting is a mechanical mechanism for collecting and storing urban 
runoff. State-of-the-art stormwater management approaches have been 
performed in many countries in the last two decades, e.g., and it was 
started in the U.S. in 1970 to protect the water quality of lakes and 
streams and control the pollution of overland flows (USEPA, 2009). The 
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landscape architects, planners, and drainage engineers could improve 
each discipline (e.g., Konrad et al., 1995). Recently, they have devel-
oped some integration approaches, such as compact development and 
increased housing density (USEPA, 2009), limiting imperviousness 
(Moglen and Kim, 2007), and Low Impact Development (LID) (USEPA, 
2009). For instance, USEPA estimated that implementing LID BMPs 
could save 15–80% of cost compared to the conventional methods 
(USEPA, 2009). The UK has mainly focused on the sustainable urban 
drainage system (Andoh and Iwugo, 2002). It has expanded the scope to 
sustainable water and wastewater integrated into land-use planning. 
Canada has initiated a new stormwater management approach called 
ADAPT (Agree Design Act Plan Test) for a stormwater catchment in 
basins in various rainfall events and different scales as site, neighbor-
hood, watershed, or regional scales. The Canadian Water Balance Model 
simulates and makes different planning alternatives. Japan has also 
investigated the regulating effect of infiltration, detention, and retention 
of runoff discharge (Musiake et al., 1999). New Zealand has established 
integrated and comprehensive stormwater management and conserva-
tion of water resources for both urban and rural areas (Van Welie et al., 
2018). Furthermore, the National Water Agency of Singapore has initi-
ated the Active, Beautiful and Clean (ABC) waters program in 2006, 
focusing on water security and integrated blue-green infrastructure 
(BGI) strategic initiatives. 

The stormwater can be controlled in many forms, such as ponds, 
streams, lakes, cascades, and fountains. Retention pond design is one of 
the WSUD trustable solutions to get rid of flooding problems, tackle 
monsoon, and creating livable water-based urbanism (Siddiqua, 2020). 
The retention ponds are basins that catch water-runoffs transferred from 
higher elevation areas to the newly populated areas covered by newly 
developed buildings, parking lots, and roads. The retention pond is 
known as a permanent pool allowing the deposition of sediments and 
diminishing pollutant concentration (Miguez et al., 2015). It is also 
known as a wet detention pond (or preservation pond) as a part of a 
drainage system designed to contour water flow during rainstorms and 
trap contaminated solid particles of the run-offs along the highways, 
motorways, and urban areas (Lee et al., 1997; Rae et al., 2019). The 
retention pond also acts as a construction control measure for reducing 
or even avoiding the flood damages. It holds up the storm-runoff in a 
drainage system for a particular time and limits the peak discharge to a 
convenient level (Verstraeten and Poesen, 1999). The other significant 
function of the retention pond is to store the muddy floods. Birx-Ray-
buck et al. (2010) has stated that retention ponds can collect contami-
nants of stormwater runoff, which are not suitable for pollution sensitive 
species and habitats in the ecosystem and green spaces (such as parks, 
gardens, urban forests, landfills). The retention pond offers water 
quality and flood control through a natural process and provides the 
most effective stormwater treatment for removing the total mass of 
pollutants from heavy rainfalls (Maniquiz-Redillas et al., 2014; Che 
et al., 2014). The treatment trains treat the runoff by providing quality 
multi-usage water through bio-filtration systems. Aquifer Storage and 
Recovery is an advanced system that uses artificial underground aqui-
fers for stormwater bio-filtration through permeable media or via direct 
injection and channeling water runoffs into trenches, densely vegetated 
basins, or retention ponds (FAWB, 2009; Coutts et al., 2013). In reten-
tion ponds, hydraulic, hydrologic, and botanic designs are integrated 
and interconnected for long-term sustainable outcomes (Wong, 2006). 
The compartmentalization of stormwater retention ponds operates the 
by-pass high flows to the detention storages within the required deten-
tion time and inter-event periods. Pond shapes, vegetation layout, and 
bathymetry affect its hydraulic efficiency (Wong, 2006). Collectively, it 
was expressed that; i) improper designs of retention ponds make abun-
dant residential areas and environments, and ii) unsuitable filtering 
plantings and vegetation along the retention ponds make tragically 
polluted water flows (Kim et al., 2009; Hussein, 2014). 

2. Problem statement 

The Water Centric Sustainable Communities, Sustainable Blue-green 
Urbanism, and the concept of future cities may seem a dream today; 
however, the future is constructed by the new incremental activities and 
discoveries from now. Accordingly, there is a need for multi-disciplinary 
research to solve multi-dimensional water problems (Novotny et al., 
2010). Water sensitive city paradigm tries to integrate the ecological, 
sociological and environmental aspects into water sensitive programs 
and policy-making, which might be different in countries with specific 
management policy (Van Welie et al., 2018). The water-sensitive city 
strategy is currently practicing in many developed countries, such as the 
U.S., Singapore, Australia, but not safely and reliably in some others as 
Indonesia (Kösters et al., 2020). These countries face the lack of low 
water security caused by infrastructural deficiencies, high vulnerability, 
high hazard exposure, institutional & stakeholders challenges, and 
governmental structures and mechanisms (Hoekstra et al., 2018; Ramos- 
Mejía et al., 2018). Meanwhile, WSUD can considerably connect urban 
water streams and human activity; however, there is a paucity of inte-
grated connection between urban water quality and human health and 
consciousness (Wong, 2006). 

A multifunctional stormwater management system can make the 
retention pond more naturally effective (Adam et al. 2016). A multi-
functional pond can fulfill ecological, economic, cultural, historical, and 
aesthetical dimensions (Birx-Raybuck et al., 2010; Keyvanfar et al., 
2018; Zhou et al., 2020). Integrating stormwater management and 
urban landscape design provides a mechanism for promoting urban 
climates and urban communities’ health and well-being. One of these 
approaches is to design the retention pond-park. The retention pond- 
park can fluctuate with the water levels throughout the year in sea-
sonal variation, where local users may incorporate environmental and 
biodiversity within their living environment. In retention pond-parks, 
rushes, reeds, or other indigenous plants can treat water as filters and 
purifiers, which would then use for aquaculture, irrigation, potable 
water, or mixed with groundwater (Menetrey et al., 2011; Yang et al., 
2013; Zhou et al., 2020). Siddiqua (2020) states such a system can be 
integrated with water-based recreational facilities or water-based public 
places (e.g., water parks in local and city scales). Therefore, the multi-
functional pond (i.e., retention pond-park) can play a key role in sus-
tainable urban development and water-sensitive urban design by 
creating a multifunctional land-use and built environment. 

However, urban ecologists and landscape planners seek an assess-
ment model to quantify and evaluate the diverse functions of retention 
pond-parks. According to the literature, a few decision making models 
and tools have been developed that assist the WSUD implementation 
while focusing on the analytical estimation of multifunctional pond 
stormwater management. These tools carry different goals as sustain-
ability assessment, water quality impact assessment, or cost-benefit 
analysis (Bach et al., 2014). These decision-making methods have 
been remarkably used to the minimum extent in retention pond 
assessment and evaluation. Regarding the anthropogenic effects and 
pollution on the quality of pond water, the multivariate statistical 
decision-making methods have been applied, such as Artificial Neural 
Networks (ANN), Artificial Intelligence (AI), Principal Component 
Analysis-PCA (Saxena and Gangal, 2010), and Geographic Information 
System (GIS) (Al-Adamat, 2008). These methods assist the environment 
planners in controlling the pond stormwater treatment through site 
management and sites selection for water harvesting (Al-Adamat, 2008), 
soil preservation, remedial actions (Taner et al., 2011), and wastewater 
treatment and waste stabilization (Garfí et al., 2017; Li et al., 2018). 
While a few researchers have studied the ecological quality assessment 
of the ponds associated with the socio-environmental aspects (e.g., 
Williams and Cary, 2002), some have focused on the ecological- 
biodiversity integrity in pond preservation and rehabilitation assess-
ment (e.g., Biggs et al., 2005; Duelli et al., 2007). Regarding the hy-
drological assessment of ponds, Hong (2008) has established a 
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numerical model for the hydrological continuity evolution of the 
detention ponds based on routing phenomena. His model calculates the 
maximum detention volume of the pond based on different shapes, 
inflow hydrograph, and outflow devices. Bolte et al. (2000) have 
developed a decision support software for assessing and analyzing the 
ecological and economic impacts of different decisions on aquaculture 
production of the ponds. This software is used for manipulating pond 
aquaculture facilities using a series of mini-databases and several 
knowledge-based components. Vezzulli et al. (2006) have applied 
MATLAB software for infrastructure planning and management of 
Phyto-treatment ponds to manipulate criteria and gross estimation of 
their effects on environmental and biological nitrogen removal effi-
ciency. According to Sharma et al. (2016), several tools and models have 
been developed to achieve WSUD objectives in retention pond design 
and development. However, these tools should be able to locally 
applicable and adaptable to the target site covering all ecological, bio-
logical, hydrological, physical, and environmental dimensions. 

Accordingly, the current research highlights a paradigm shift in 
multifunctional retention pond-park design practices and stormwater 
management philosophies and principles. The research delivers 
ecologically, biologically, and sustainably water-sensitive urban design 
and planning, aiming to develop a decision support tool for quantifying 
and evaluating the stormwater management performance of the multi- 
functional retention ponds in urban areas, so-called Urban Retention 
Pond Index (URPI) assessment model. The current research has con-
ducted two research phases to achieve its objectives. Phase one is to 
develop and validate the URPI assessment model. After identifying the 
features (i.e., criteria and sub-criteria) of the URPI assessment model 
through a critical literature review, applying Analytical Network Process 
(ANP) to measure the weights of features and formulate the URPI index 
equation. Implementing the URPI model in a case study has validated 
the model while conducting the Weighted Sum Method (WSM) and a 
series of expert input studies. Phase two has conducted the Global 
Sensitivity Analysis (GSA) to analyze the uncertainty and effect of the 
variation of URPI inputs to variation of its outputs and to investigate the 
non-influential input factors while improving the predictive capabilities 
of the model. 

3. Materials and methods 

3.1. Features of the URPI assessment model 

Urban ecologists move quickly towards adopting multifunctional 
retention pond design, integrating quantity and quality objectives in 
stormwater management. The URPI assessment model comprises the 
features of a retention pond design extracted through a critical literature 
review on water-sensitive city strategies and policies; in particular, 
Water Sensitive Urban Design (WSUD), Water Sensitive Planning (WSP), 
Sustainable Urban Drainage Systems (SUDS), Green Infrastructure (GI), 
Low Impact Development (LID), and Climate Sensitive Urban Design 
(CSUD). Accordingly, the features cover the functional and structural 
performance of multifunctional retention ponds for stormwater man-
agement, which clustered into three criteria (C1.Geotechnical functions, 
C2.Water quality and treatment, and C3.Structural and physical land-
scaping functions) series of sub-criteria. To develop the URPI assessment 
model, the weights of features will be measured, as explained in the next 
sections.  

▪ C1. Geotechnical Functions: 
C1.1. Soils Investigation: Soil investigation is required for any 
type of retention facilities and the location. Each soil log 
should extend a minimum of 1.5 m below the bottom of the 
facility, describe the soil series, the textural class of the soil 
horizon(s) through the depth of the log, and note any evi-
dence of high groundwater level, such as mottling. 

C1.2. Infiltration Rate: It equals one-half of the infiltration 
rate found from the soil textural analysis. 
C1.3. Runoff Quality Treatment: Runoff from the three-month 
ARI design storm is to be treated entirely before discharge to 
the basin. 
C1.4. Drawdown time: Recharge basins shall be designed to 
completely drain the intended stored runoff within one day 
following the ten-year ARI, 24 h design storm, and two days 
of the hundred-year ARI, 24-hour design storm with 
appropriate correction factors. 
C1.5. Backfill Material: The aggregate material shall consist 
of a clean aggregate with a minimum diameter of 30 mm 
and a maximum diameter of 70 mm. A void space for these 
aggregates is assumed to be in the range of 30 to 40 percent. 
C1.6. Overflow Route: An overflow route must be identified if 
the retention facilities’ capacity is exceeded. It should be 
designed to meet the minimum requirement of preservation 
of natural drainage systems within erosive velocities. 
C1.7. Seepage Control: It needs to prevent any possible 
adverse effects of seepage zones when nearby building 
foundations, basements, roads, parking lots, or slopping 
sites. Developments on sloping sites often require the use of 
extensive cut and fill operations. 
C1.8. Groundwater mound: The maximum groundwater 
mound under the center of the basin is limited to 1.5 m 
below the basin’s base.  

▪ C2. Water Quality and Treatment: 
C2.1. Soil retention: The cultivation systems shape limiting 
surface runoff by improving the soil structure, agricultural 
drainage, liming, proper agro-techniques, proper crop 
rotation, and increasing organic matters in the soil. 
C2.2. Spillways: The spillway is only applied for the infil-
tration basin. The bottom elevation of the low-stage orifice 
should be designed to coincide with the one-day infiltration 
capacity of the basin. 
C2.3. Soil and groundwater aquifers: The aquifers are for; 
cultivation, limiting surface runoff; increasing soil filtration 
capacity, anti-erosion, Phyto-drainage, agro-drainage mea-
sures, the regulated outflow from the drainage system, and 
ponds and infiltration wells for storage of rainwater from 
sealed surfaces 
C2.4. Surface waters control: Hydro-technical systems of di-
vision and storage of water are for; regulation of outflow 
from ponds and small reservoirs, water storage in drainage 
ditches and channel, retention of water outflowing from 
drainage systems, and increasing the valley retention 
including the construction of polders. 
C2.5. Pollutant Filtration system: The pond allows road par-
ticles to settle and prevent them from entering the envi-
ronment. The pollutant concentration needs to be 
diminished, and the sediments have to be dispositioned.  

▪ C3. Structural and Physical Landscaping Functions: 
C3.1. Observation Well: It shall be recommended for every 
on-site retention pond, and also shall be required for every 
community retention. It indicates how quickly the trench 
dewaters following a storm and should be located in the 
canter of the structure. 
C3.2. Outlets: The bottom elevation of the low-stage orifice 
controls the release control from pond and coincides with 
the prescribed one-day infiltration capacity of the basin. 
C3.3. Slope control: The community detention facilities 
should be a minimum of 20 m from any slopes greater than 
15 percent. A geotechnical report should address the po-
tential impact of the basin infiltration upon the steep slope. 
C3.4. Pedestrian trails: The trails within the retention pond 
area provide a secondary path system for pedestrians to 
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experience the pond natural landscape and habitat. In some 
areas, trails will provide a pathway connection between the 
retention pond onsite and outside. 
C3.5. Facilities for pollutant and flow-rate control: On-site 
retention facilities shall be located 3 m from building 
foundations. Community retention facilities should be a 
minimum of 50 m upslope and 7 m downslope from any 
building. 
C3.6. Vegetation: The embankments, emergency spillways, 
spoil and borrow areas, and another disturbed area shall be 
stabilized and planted following the Minimum Requirement 
of Erosion and Sediment Control. 
C3.7. Landscape habitat retention: The habitat and ecosystem 
shape the proper structure of the land use through; arable 
fields, grasslands, forest, ecological lands and ponds, affor-
estation, creation of protective belts, woodlots shrubs, 
bruises and terraces, wetlands, and swamps. 

3.2. Analytic Network Process (ANP) method 

Analytic Network Process (ANP) is a decision-making method 
developed by Saaty (2005) for complex and complicated decision- 
making problems and networks. It can be used for developing a deci-
sion support tool. ANP is an advanced method of AHP that resolves the 
limitations of dependency among variables in a system by dividing them 
into different decision criteria and embedded sub-criteria (Saaty, 2005). 
ANP makes a connection network between criteria and sub-criteria, 
indicating the dependencies (either inner or outer dependencies). In a 
criterion, the dependencies among components (i.e., nodes) show the 
inner dependencies, while among the sub-criteria in a criterion (and 
other criteria) show the outer dependencies (Chemweno et al., 2015; 
Fazli et al., 2015). This research has used the ANP-solver v1.0.1 soft-
ware, conducted the following ANP steps: 

Step 1: Pairwise comparison; This step compares the interactions of 
components (i.e., nodes) pair-wisely using the ANP-based questionnaire. 
The questionnaire collects the experts’ judgments on a nine-point rating 
scale (1 is equally important, to 9 extremely important). 

Step 2: Supermatrix development; In this step, the supermatrix will 
be developed, which indicates the priorities of the pair-wised compari-
sons. The supermatrix of current research is shown in Equation 1, where 
wij is the principal eigenvector of the influence of the components 
(criteria and sub-criteria). 

WURPI =

⎡
⎢⎢⎣

w1.1 w1.2 w1.3 ⋯ w1.20

w2.1 w2.2 w2.3 ⋯ w2.20

⋮ ⋮ ⋮ ⋮ ⋮

w20.1 w20.2 w20.3 ⋯ w20.20

⎤
⎥⎥⎦

Step 3: Weighted supermatrix calculation; This step calculates the 
unweighted supermatrix and normalizes the weights to enhance data 
integrity while reducing data redundancy. The normalized unweighted 
supermatrix entails organizing the column of the matrix to ensure that 
data integrity limitations appropriately implement the components’ 

dependencies. Next, the weighted supermatrix is calculated by multi-
plying the corresponding priority of each criterion to the unweighted 
values. 

Step 4: Limit supermatrix calculation; As the final step, the weighted 
supermatrix will be raised to the sufficient power k by using Eq. (2) until 
it is stable enough to obtain overall priorities or donated ANP weight. 
lim
k→∞

wk (2)  

3.3. Weighted Sum method (WSM) 

The research has validated the URPI model by implementing a study 
area (i.e., Boneyard Creek retention pond) and applying the Weighted 
Sum Method (WSM). Boneyard Creek pond is one of six watersheds 
within Champaign in the United States (Fig. 1). It is the oldest part of the 
city, including downtown and Campustown (a business area adjacent to 
the University of Illinois campus) as a public open space during the 
unflooding seasons. It is a daily stormwater management facility for Il-
linois and stream restoration for natural ecology habitat. This site is to 
provide the hundred-year flood protection downstream, revitalization of 
the neighborhoods, and recreational amenities and to enhance water 
circulation between the campus town and downtown. Boneyard Creek 
pond is a highly channelized and engineered waterway that flows 
through Champaign, draining much of the stormwaters of the city, 
including the central business district and the University of Illinois 
Campus town area. The low water quality and flooding issues have 
prompted the city and university to develop a seven-phase redevelop-
ment master plan. Phase two of the master plan has considerably 
increased the stormwater storage capacity and enhanced ecological 
functions while creating new spaces for recreation and enjoyment. 

WSM is a multi-criteria decision-making method for evaluating a 
series of alternatives based on several decision criteria (and sub-criteria) 
and several experts in decision-making problems (Lamit et al., 2013; 

Fig. 1. Aerial photo of Boneyard Creek retention pond. (Source: http://landscapeperformance.org/case-study-briefs/boneyard-creek-restoration).  
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Kohar, 2018). Based on the WSM’s purposive sampling method, the 
group of five experts attended in the ANP process were invited to the 
WSM process (experts in pond design, environmental planning, and 
stormwater management). A self-reporting questionnaire was answered 
by the experts who rated all the criteria and sub-criteria based on WSM’s 
5-point Likert scaling (1 is weak, five is excellent). The following WSM 
equations have been applied to get the approval weights of each sub- 
criterion through the judgments of experts (Eqs. (3) and (4)). 

WSM(ai) = (
∑n

j=1

wj)ai(for i = 1, 2, 3,⋯,m) (3)  

where, 

‘wj‘, it refers to the assigned weight by an expert in the WSM dis-
cussion for the sub-criterion ‘j.’ 
‘ai’, it is sub-criterion of WSM discussion with the given ordering 
number of ’i’.

WSM(ai)/WSM(a)max = Consensus in % (4)  

where, WSM(a)max, it refers to the maximum sum of possible weight 
given for the sub-criterion ‘j.’ 

3.4. Global Sensitivity Analysis (GSA) 

The research has conducted Global Sensitivity Analysis (GSA), which 
constitutes a series of statistical techniques to evaluate the effect of 
variability and uncertainty of the input factors on the outputs of a 
decision-making model (Saltelli et al., 2008; Vrugt et al., 2008; Baroni 
and Tarantola, 2014). GSA is used for various purposes, such as model 
verification, model calibration, model simplification, or diagnostic 
evaluation (Nossent et al., 2011; Butler et al., 2014; Wagener and Pia-
nosi, 2019). Accordingly, GSA has diverse approaches to support robust 
decision making, reducing uncertainties, and evaluating the dominant 
controls (Anderson et al., 2014). GSA conducts the Monte Carlo simu-
lation, Regional Sensitivity Analysis, and other input–output post- 
processing analysis (Noacco et al., 2019). In particular, it calculates 
the sensitivity indices of the model’s input factors. It provides a series of 
setup options for users, in which each setup is suitable for a specific 
study. These options impact the reproducibility and transparency of the 
robust results of GSA, such as estimated sensitivity indices, detecting 
non-influential parameters (i.e., screening), consequent ordering of the 
most prominent parameters (i.e., ranking), and variance cutting 
(Vanuytrecht et al., 2014; Noacco et al., 2019). Also, GSA can apply 
mapping methods (e.g., Classification and Regression Trees (CART), 
Patient Rule Induction Method (PRIM)) for uncertainty analysis, which 
explores the space of possible variability of the model parameters (e.g., 
natural resources, land use, etc.) (Lempert et al., 2008). It might increase 
the vulnerability thresholds of a model or measure the links between the 
vulnerability resources in the model and its properties (Prudhomme 
et al., 2013). 

In the current research, GSA aims to verify and validate the reli-
ability of URPI assessment behavior and to assess the robustness of re-
sults across the model assumptions and uncertain inputs. GSA measures 
the performance of the URPI assessment model through a series of 
simulations and a set of sensitivity indices and forecasts, e.g., the sum of 
squared errors and aggregate statistics of parameters. GSA produces 
scalar output metrics, such as statistics or performance metrics. There-
fore, the model needs to translate the time distributed outputs or space 
distributed outputs to a scalar output metric (Homma and Saltelli, 1996; 
Hartmann et al., 2013). The output sensitivity analysis techniques are 
chosen based on the goals of URPI model; therefore, the current research 
has applied the ranking approach, which supports the space-dependent 
and decision-making nature of the outputs of the URPI model. The GSA 
ranking approach indicates the order of the input factors based on their 

comparative and cumulative effects on the output. Definitely, this 
approach can assist us in detecting dominant controls of the behaviors of 
URPI, prioritizing the actions for uncertainty reduction, and mightily to 
understand better and support the URPI model development. 

GSA tools have been developed and available in different sources; 
such as MATLAB, GUI-HDMR MATLAB by Ziehn and Tomlin (2009), 
Sensitivity Analysis package by Pujol et al. (2014), the Cþþ-based 
PSUADE software by Gan et al. (2014), and Fortran functions by Joint 
Research Centre (2014), and so on. This research has used the SAFE R1.1 
toolbox (Sensitivity Analysis For Everybody), as well as, XLMiner Data 
Visualization toolbox, and Analytic Solver, and Microsoft Excel for the 
Global Sensitivity Analysis of the URPI model. The SAFE toolbox has 
several platforms of sensitivity analysis; i) using multiple GSA methods 
to validate and complement an individual result, ii) providing several 
visualization tools, and iii) providing multiple revision choices for the 
user, particularly for robust estimation of sensitivity indices. 

4. Analysis and results 

4.1. Developing the URPI assessment model 

To develop the URPI model, the research had to determine the 
weights of all criteria and sub-criteria. The ANP method was applied to 
determine the weights of three (3) retention pond design criteria and 
their sub-criteria. Firstly, the ANP-decision-making construct of the 
model was created based on the interactions between criteria and sub- 
criteria. This research has employed the ANP-Solver software to 
construct the decision construct and compute the supermatrics (see 
Fig. 2). 

The ANP-Solver software is an established platform developed by a 
group of researchers at the University of the Aegean to conduct the ANP 
method. Using this software, the pairwise comparison matrices were 
designed, presented to experts for ratings. The research has K experts 
and n criteria. The output from each expert in direct relation of an n × n 
matrix was designated as xk

ij, where ij is the influence level of criterion i 
on criterionj. According to Dehdasht et al. (2017), “there is not any 
general rule for the number of responding in MCDM techniques such as 
ANP, but, it is theatrically valid that MCDM does not require a big 
sample.” This statement was also supported by Kuo and lu (2013), and 
Uygun et al. (2015). The research conducted the pairwise comparison 
step inviting five experts who had knowledge and experience in urban 
Ecology, landscape design and planning, and Environment planning and 
Environment management. Referring to the ANP method, an example of 
a pairwise comparison question was “To C1. Geotechnical functions, 
C1.1. Soils Investigation is (between 1 and 9) more important than C1.2. 
Infiltration Rate”. After completing all pairwise comparisons, the un-
weighted supermatrix and weighted supermatrix were calculated. Then 
the limited supermatrix was computed, which determines the normal-
ized weights of each criterion and sub-criterion in the URPI model. 

ANP-solver software has computed the weighted supermatrix of the 
criteria (C1.Geotechnical functions, C2.Water quality and treatment, 
and C3.Structural and physical landscaping functions) (see Table 1) 
based on the entries of the pairwise comparisons. Next, the software has 
computed the weighted supermatrix of the sub-criteria for sub-criteria 
(see Table 2). 

After computing the weighted supermatrices, the software has 
computed the limited Supermatrix of sub-criteria, as shown in Table 3. 
Table 3 presents the final weigh of each sub-criterion. Among the sub- 
criteria, the sub-criterion Soil Investigation has received the highest 
weight (WC1.1 = 0.170), followed by the Soil retention (WC2.1 = 0.156), 
and Infiltration Rate (WC1.2 = 0.108). In contrast, both facilities’ 

development and vegetation sub-criteria have received the lowest 
weights (0.004). 

Using the outputs of the limited Supermatrix (Table 3), the URPI 
index model was developed (see Eq. (5)). This is a linear index model 
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involving all the sub-criteria and their corresponding values. 

where, 

a; consistent value of sub-criterion extracted from Table 3 
i; sub-criterion of the criterion Geotechnical functions (for i: 1,2,3, 
…,8) 
j; sub-criterion of the criterion Water quality and treatment (for 
j:1,2,3, …,5) 
k; sub-criterion of the criterion Structural and physical landscaping 
function (for k:1,2,3,…,7) 
X; WSM-based rate of the sub-criterion ‘i’ assigned by the model-user 
(s) in the case study 

Y; WSM-based rate of the sub-criterion ‘j’ assigned by the model-user 

(s) in the case study 
Z; WSM-based rate of the sub-criterion ‘k’ assigned by the model-user 
(s) in the case study 

4.2. Implementing the URPI assessment model in a study site 

The URPI assessment model was implemented in the Boneyard Creek 
retention pond. The experts have evaluated the site across the URPI 
model features. They have rated all criteria and sub-criteria for this 
target site based on WSM 5-point Likert scaling. WSM has computed the 
final consensus values of sub-criteria for this site. According to Table 4, 
the Final-WSM column shows that the experts have consensus more than 
70% in most of the sub-criteria, where Soil retention and Soil and 
ground waters aquifers have received the most extensive consensus 
(0.922). Next, Soils Investigation and Drawdown time have earned 
0.883 consensuses. The limited weighted values resulted in Table 3 have 
been multiplied to the final-WSM consensus values to obtain the actual- 
limited weighted values for each sub-criterion in the Boneyard Creek 
retention pond. The actual-limited weighted values were imported to 
the URPI index (Eq. (5)). As a result, the Boneyard Creek retention pond 
has received a 0.809 index score. 

Fig. 2. The ANP construct of URPI assessment model using ANP-Solver software.  

Table 1 
Normalized Weighted Supermatrix of URPI assessment model’s criteria.  

Criteria C1 C2 C3 
C1  0.586  0.551  0.633 
C2  0.353  0.382  0.304 
C3  0.061  0.066  0.063 

Note: C1. Geotechnical Functions, C2. Water Quality and Treatment, and C3. 
Structural and Physical Landscaping Functions. 

Urban Retention Pond Index (URPI)=
∑

Index Geotechnical Functions+
∑

Index Water Quality+
∑

Index Structural and Physical Landscaping Functions

=
∑8

i=1

aiX+
∑5

j=1

ajY+
∑7

k=1

akZ

(5)   
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Table 4 
WSM data collection and analysis of implementing the URPI assessment model in the Boneyard Creek retention pond.  

Criteria Expert Panels WSM(a)maxof 
Criterion  

Cons. Sub-criteria Expert Panel WSM(a)maxof 
Sub-criteria  

Cons. Final WSM 
Cons. of Sub- 
criteria 

Applied Limited 
Weighted Value to Final- 
WSM Cons. of Sub- 
criteria 

EX1  EX2  EX3  EX4  EX5  EX1  EX2  EX3  EX4  EX5  

C1. Geotechnical 
Functions 

5 4 4 5 4 25 0.92 C1.1. Soils 
Investigation 

5 5 4 5 4 25  0.96  0.883  0.150 

C1.2. Infiltration Rate 5 5 4 4 5 25  0.92  0.846  0.091 
C1.3. Runoff Quality 
Treatment 

4 5 4 5 5 25  0.92  0.846  0.075 

C1.4. Drawdown time 5 5 5 4 5 25  0.96  0.883  0.049 
C1.5. Backfill Material 3 4 4 4 3 25  0.72  0.662  0.030 
C1.6. Overflow Route 5 4 2 2 4 25  0.68  0.626  0.023 
C1.7. Seepage Control 4 4 5 4 2 25  0.76  0.699  0.026 
C1.8. Groundwater 
mound 

4 5 4 4 5 25  0.88  0.810  0.030 

C2. Water Quality and 
Treatment 

4 5 4 5 5 25 0.96 C2.1. Soil retention 5 5 4 4 5 25  0.96  0.922  0.144 
C2.2. Spillways 4 5 4 3 5 25  0.92  0.883  0.068 
C2.3. Soil and ground 
waters aquifers 

5 5 4 5 4 25  0.96  0.922  0.052 

C2.4. Surface waters 
control 

5 5 3 4 5 25  0.88  0.845  0.032 

C2.5. Pollutant 
Filtration system 

4 3 5 4 3 25  0.76  0.730  0.024 

C3. Structural and 
Physical Landscaping 
Functions 

5 5 4 4 3 25 0.84 C3.1. Observation Well 5 4 5 5 3 25  0.88  0.739  0.016 
C3.2. Outlets 4 5 4 3 5 25  0.92  0.773  0.011 
C3.3. Slope control 5 4 4 3 5 25  0.84  0.706  0.007 
C3.4. Pedestrian trails 5 4 5 4 5 25  0.92  0.773  0.004 
C3.5. Facilities for 
pollutant and flow-rate 
control 

3 4 4 4 4 25  0.76  0.638  0.003 

C3.6. Vegetation 3 4 4 3 4 25  0.68  0.571  0.002 
C3.7. Landscape 
habitat retention 

5 5 4 5 4 25  0.96  0.806  0.004 

Note. EX: Expert; Cons.: refers to consensus calculated based on Eq. (4). 
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Urban Retention Pond Index (URPI)Implementation =
∑IndexGeotechnical 

Functions +
∑IndexWater Quality +

∑Index Structural and physical Landscaping 
functions 
URPIImplementation Geotechnical Functions = (0.170 * 0.883) + (0.108 * 
0.846) + (0.089 * 0.846) + (0.055 * 0.883) + (0.045 * 0.662) +
(0.036 * 0.626) + (0.037 * 0.699) + (0.037 * 0.810) = 0.444  

URPI Implementation Water Quality = (0.156 * 0.922) + (0.077 * 0.883) + (0.056 * 
0.922) + (0.038 * 0.845) + (0.033 * 0.730) = 0.320                                    

URPI Implementation Structural and physical Landscaping functions = (0.021 * 0.739) +
(0.014 * 0.773) + (0.010 * 0.706) + (0.005 * 0.773) + (0.004 * 0.638) +
(0.004 * 0.571) + (0.005 * 0.806) = 0.046                                                 

Urban Retention Pond Index (URPI)Implementation = 0.444 + 0.649 + 0.046 =
0.809                                                                                                   

The UPRI assessment model has five (5) grading levels. Grade A has 
the maximum index grading score, while grade E has the lowest index 
grading score. The calculation of maximum (Max.) and minimum (Min.) 
grades are presented bellow. For the maximum grading score, if WSM 
weights of all sub-criteria are appointed as 1, then the maximum score 
equals to 1.000. The minimum (Min.) grading score is 0.2 of the 
maximum (Max.) grading score; hence, the minimum score equals 200.  
URPI model Max = 0.577 + 0.360 + 0.063 = 1.000                                     

URPI model Min = URPI model Max * 0.2 = 1.000* 0.2 = 200                     

According to the URPI model’s gradings, the Boneyard Creek 
retention pond has earned Grade A (i.e., Superior); meaning, it is a well- 
designed retention pond executing stormwater management and treat-
ment appropriately, and simultaneously, performing effectively as a 
social park. 

5. Global Sensitivity Analysis (GSA) of URPI assessment model 

The research has conducted different methods and techniques for 
sensitivity analysis of the URPI assessment model; Cumulative Distri-
bution Functions (CDF), Probability Density Function (PDF), 
Scatterplot-Histogram Plot, Box-Whisker Plot, and Parallel Coordina-
tion. Since each GSA method estimates a specific aspect of output dis-
tribution, this research has applied these methods to validate one 
another. 

5.1. Cumulative Distribution Functions (CDF) 

The Regional Sensitivity Analysis (RSA) (or Monte Carlo filtering) 
can detect the specific regions in the input space with specific values of 
the output (Spear and Hornberger, 1980). The RSA method can divide 
the input data according to the corresponding output threshold position 
(i.e., below or above the threshold) through the Cumulative Distribution 
Functions (CDF) method and Kolmogorov Smirnov statistic. The visual 
inspection of distributions can give specific information, such as vari-
ability ranges of the outputs. 

This study has measured CDF, which is the probability of the vari-
ance and standard deviation for the probability distribution of the URPI 
model’s outputs. In CDF, the value of sub-criterion is equal or less than x; 
F(x) = Pr[X ≤ x] = α. For discreteoutput distributions, CDF uses the 
equation; F(x) =∑x

i=0f(i), where F (Cumulative Distribution Functions) 
is determined from f (Probability Density Function). The probability was 
calculated through; P(X = b) = Fx(b)− lim

x→b−
FX(x), where X is the vari-

able with an x value of b. The CDF of the URPI model was compared to 
the normal distribution curve to measure whether derivatives exist (see 
Fig. 3). As shown in Fig. 3, the URPI model has an exponential cumu-
lative distribution, a continuous analog of the geometric distribution 
with a constant average rate. The CFD curve has 0.05 mean (μ) and 
0.0490 standard deviations (σ). The maximum point of the graph has the 
largest ANP normalized weighted value (W) 0.213 (with 1.000 standard 
deviations (σ) to the mean), and 0.9995 normal standard deviations (z). 
The CFD and normal curves have an intersection in point 0.102, where z 
equals to 0.8601. Comparing the goodness-of-fit lines of CDF and the 
normal distribution curve shows that they have 98% similarity (yF =
5.2753x + 0.2375, yN = 5.3558x + 0.1914, respectively), and the 
regression variance of the curves are considerably close to each other; 
RF2 = 0.8009 and RN2 = 0.9424, respectively. It indicates that outputs of 
the URPI model have a proper empirical distribution with a minor 
variance to the theoretical distribution. 

The research has computed the Kolmogorov–Smirnov test (KS test) to 
compare the distribution of the model’s outputs with the normal (ideal) 
probability distribution, using the equation; Dx = supx|Fn(x)−F(x) |; 
where supx is the Supremum (i.e., maximum absolute differences be-
tween the values of empirical and ideal distributions) of the set of dis-
tances, and Dn converges to 0in the limit when n→∞. The KS test can 
effectively provide the rate of output convergence. The KS test has 
implemented twenty conditional samplings (n) for each of twenty input 

factors (i.e., 400 total sampling size). The output values were stan-
dardized to compare with the normal null distribution based on the 
supremum value. Accordingly, the KS test indicated the graph has 
0.1924 (or 19.24%) supremum, while the probability of supremum is 
3.849%. 

5.2. Probability Density Function (PDF) 

The moment-independent sensitivity indices do not rely on a specific 
moment and shape of output distribution to measure the uncertainty. 
This method is called the density-based method, which measures the 
Probability Density Function (PDF) of outputs and their variances. The 
PDF can be computed either two approaches; i) conditional PDF is 
induced by fixing one input factor according to a prescribed value, and 
ii) unconditional PDF is induced by divergency and varying all factors 
(Ahmed and Singh, 2020). PDF detects the specific regions in the input 
space with specific values of the URPI model outputs. 

CDF and PDF are the exceptional cases of the lognormal distribution, 
which is the maximum entropy probability distribution for the multi-
variate variables (X), where mean is the division of parameterization 

URPIIndexGrading Score (S) :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

800 < S⩽1.000 : Grade A: Superior; Well - designedurbanretention pondwhere treats

the stormwater effectively.
600 < S⩽800 : Grade B: Good; Urbanretention pondtreats the stormwater effectively,

but minor improvements are needed.
300 < S⩽600 : Grade C: Fair; Usableurbanretention pond wheretreats the stormwater,

but major improvements are needed.
150 < S⩽300 : Grade D: Poor; Urbanretention pondtreats the stormwater,

but serious improvements are needed.
0.0 < S⩽150 : Grade E: Very Poor; Non - usableurbanretention pond.
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shape to rate (α/β) and is more significant than zero. This study has 
measured PDF of the URPI model’s outputs (n = 400) to measure the 
probability of the continuous distributions of them. PDF has a discrete 
distribution function of the variate X (i.e., sub-criterion) with the value 
x, and is shown as; f(x) = Pr[X = x]. Since the URPI model’s outputs 
have the lognormal distribution, PDF was computed through; f(x) =

1
xω

̅̅̅̅2π
√ exp

[
−(In(x)−θ)2

2ω2

]
; where 0 < x < ∞, θ is mean, and ω2 is variance. 

Also, we have analyzed the standard normal distribution curve using the 
function; y = 1

σ
̅̅̅̅2π

√ e−1/2Z2 . In this regard, the research has computed the 
histogram of the outputs (i.e., ANP normalized weighted values). The 
histogram diagram has distributed the outputs into 22 groups. Then, the 
normal distribution curve was calculated, which has 0.05 mean (μ), 
0.036 median (x), 0.004 mode (x̂), 0.049 standard deviation (σ), and 
0.002 variances of the distribution (σ2). Considering 95% confidence 

Fig. 4. Probability Density Function (PDF) of the URPI assessment model.  

Fig. 3. Cumulative Distribution Function (CDF) of the URPI assessment model.  
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level, the confidence interval equaled to 0.0048 (upper level 0.0548, 
and lower level 0.0451). Fig. 4 shows the PDF plot embedding the 
normal distribution curve. As can be seen, the URPI assessment model 
has a lognormal distribution with 1.376 positive skewness and 1.099 
kurtoses. The middle of the distribution curve is more congested, while 
most of the data fall within intervals, and most of the outputs distributed 
after the mean. 

5.3. Multiple regression analysis and histogram analysis 

GSA conducts the correlation and regression analysis using Monte 
Carlo simulation to measure the sensitivity of the linear or non-linear 
relationship between input factors and outputs based on; Partial corre-
lation coefficient (or Spearman rank correlation coefficient), Pearson 
correlation coefficient, or Canonical Correlation Analysis (Minunno 
et al., 2013). The acceptability degree of monotonicity assumption, 
linearity between inputs and outputs, and visual inspection can deter-
mine the choice of alternatives (Singh et al., 2014). GSA uses Stan-
dardized Regression Coefficients (SRC) for the input factors with various 
units. Concurrently, Classification And Regression Trees (CART) as a 
non-linear regression method can significantly cope with non-numerical 
inputs and outputs suitable for both mapping and ranking sensitivity 
analysis (Singh et al., 2014). 

Accordingly, the current research has conducted the regression 
analysis through scatter-plot technique and computing the Pearson 

correlation coefficient (r) for the URPI model, which has three criteria 
linearly correlated. According to Fig. 5, positive slopes of regression 
functions show that all criteria are positively and linearly correlated. 
Referring to the C2-C3 correlation function (y = 0.1189x + 0.0027), 
they are strongly correlated than the other two pairs. Regression sta-
tistics in Table 5 show that the C2-C3 correlation has a −0.981642 lower 
level and 14.43372 upper level for their 95% confidence intervals. The 
C1-C2 correlation is statistically significant, with a 0.99 person regres-
sion coefficient (r) and 0.8593 coefficient of determination (r2). In 
contrast, the C2-C3 is not significantly correlated (r = 0.39, r2 = 0.85), 
although the slope of the best-fit trendline is the largest (0.1189) among 
all three pairs. The C1-C3 correlation has received the acceptable p- 
value 0.0456 (i.e., P < 0.05); however, the other correlation pairs (i.e., 
C1-C2 and C2-C3 correlations) have gained a p-value more than the 
threshold, which means that the null hypothesis is true. 

The sensitivity indices plot consists of the histogram analysis as well 
(Fig. 5), showing the distribution of each criterion’s outputs. In each 
histogram, the number of bins was defined based on the number of sub- 
criteria embedded in that corresponding criterion (e.g., C1 histogram 
has eight bins) to understand the frequency distribution of each criterion 
properly. For this reason, the group width of criteria varies; C1 has 0.023 
group width, C2 and C3 have 0.033 and 0.003 group widths, respec-
tively. According to the histograms, all three criteria have unimodal 
shapes skewed right. In the C1 histogram, 48.7% of outputs (78 as the 
count of entries in the first histogram group (i.e., bin) is divided to 160 as 

Fig. 5. Sensitivity indices: Three pair-wise regression analysis and three individual histogram analysis of the URPI assessment model’s criteria (C1. Geotechnical 
functions, C2. Water quality and treatment, and C3. Structural and physical landscaping functions). 
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the sample size of C1) is placed in the first group (lower limit: 0.026, 
upper limit: 0.0493), which was estimated almost similarly to C3 that 
56.9% of the outputs (74 divided to130) are in the first group (lower 
limit: 0.003, and upper limit: 0.006). In the C2 histogram, 50% of out-
puts have occupied the first group (lower limit: 0.015, upper limit: 
0.0486). Referring to Table 2 (Normalized Weighted values of sub- 
criteria), some sub-criteria significantly affected the ANP limited 
weighted values of their corresponding criteria, as well as the whole 
network. For example, the sub-criteria C1.4, C1.5, C1.6, C1.7, and C1.8 
(which are more than half of the total sub-criteria in C1), have received 
the normalized weighted values <0.064, while the maximum normal-
ized weighted values of C1 is 0.213. As mentioned earlier, the low 
normalized weighted values were derived due to receiving low ranking 
rates during the ANP pair-wise comparisons. Hence, these sub-criteria 
do not significantly affect either C1 or the whole network. The same 
justification is applied to C2 and C3. 

5.4. Box-Whisker plot 

Box-Whisker method is based on the variance decomposition that 
can evaluate the contribution of input factors’ variations to the variance 
of outputs (Moges et al., 2016). The current research has computed the 
first-order (main) sensitivity index, which estimates the variances 
generated by an individual input factor’s variation; so, the variance 
estimation excludes the interaction of a single input factor with other 
input factors. Box-Whisker method can compare the output of 

histograms gained by altering the input factors concurrently (Moges 
et al., 2016). In this research, the Box-Whisker method plots sensitivity 
indices based on the numerical data and their quartiles. Box-Whisker 
also plots the variation of the URPI model’s outputs without assuming 
the basic statistical distribution. 
Q2 is the middle line calculated through Q2

= [Q1 − 1.5IQR,Q3 + IQR]; Interquartile Range (IQR) = Q3 −Q1  

where, 

Q1, is the lower quartile 
Q2, is the entries median 
Q3, is the upper quartile (MathBootCamp, 2020). 

The spacing between these three quartiles indicates skewness and 
degree of dispersion (spread) of data. This research has studied different 
sensitivity indices on the URPI model’s outputs; included median (x), 
mean (x−), standard deviation (σ), and standard error of the mean (σx−). 
The following presents the findings of Box-Whisker plots across these 
metrics. 

5.4.1. Bootstrapping resampling 
Before mapping the Box-Whisker plots, the research has performed 

bootstrapping resampling. The research has conducted bootstrapping 
resampling by simulating the original sampling of the URPI model. 

Table 5 
Pair-wise regression analysis of the URPI assessment model’s criteria.  

C1-C2 
Multiple R 0.997439146      
R2 0.8593      
Adjusted R2 0.994600675      
Standard Error 0.000300037      
Observations 20      
ANOVA df SS MS F Significance F  
Regression 1 0.000315164 0.000315164 3500.958161 4.45659E-22  
Residual 18 1.6204E-06 9.00222E-08    
Total 19 0.000316784     
Trendline Coefficients Standard Error t Stat P-value Lower 95% Upper 95% 
Intercept 0.0136 0.00074948 157.9500415 9.76549E-30 0.116805759 0.119954956 
X Variable 1 0.8547 0.010871991 −59.16889522 4.45659E-22 −0.666124889 −0.620442479  
C1-C3 
Multiple R 0.451603922      
R2 0.9059      
Adjusted R2 0.159720886      
Standard Error 0.003742974      
Observations 20      
ANOVA df SS MS F Significance F  
Regression 1 6.46069E-05 6.46069E-05 4.611534285 0.045626381  
Residual 18 0.000252177 1.40099E-05    
Total 19 0.000316784     
Trendline Coefficients Standard Error t Stat P-value Lower 95% Upper 95% 
Intercept 0.0003 0.020681692 5.734007731 1.95195E-05 0.07513836 0.162039606 
X Variable 1 0.1102 2.299733724 −2.14744832 0.045626381 −9.770120591 −0.106998054  
C2-C3 
Multiple R 0.396673335      
R2 0.8544      
Adjusted R2 0.110535831      
Standard Error 0.005971084      
Observations 20      
ANOVA df SS MS F Significance F  
Regression 1 0.000119839 0.000119839 3.361175257 0.083341824 0.916658176 
Residual 18 0.000641769 3.56538E-05    
Total 19 0.000761608     
Trendline Coefficients Standard Error t Stat P-value Lower 95% Upper 95% 
Intercept 0.0027 0.032993044 0.249195731 0.806030762 −0.061094088 0.077537539 
X Variable 1 0.1189 3.668714117 1.833350827 0.083341824 −0.981642286 14.43372241 

Note: C1. Geotechnical Functions, C2. Water Quality and Treatment, C3. Structural and Physical Landscaping Functions. 
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Bootstrapping is a resampling method beneficial for complex estimators 
of the distribution parameter (θ). Bootstrapping produces the simulated 
resamples, where the distribution could approximate the characteristics 
of the original samples’ distribution and confidence intervals (Pappa-
lardo et al., 2020). The bootstrapping method designates the measures 
of accuracy, such as prediction error and bias, confidence intervals, and 
variances. It is also a very accurate method for standard intervals esti-
mation (rather than using normality of sample variance) to asymptoti-
cally control the analysis results (Banjanovic and Osborne, 2016). In the 
current research, the bootstrap resampling has derived the distribution 
of X− based on the bootstrap mean (μ*). C1 has 160 original sample size 
(n1), and C2 and C3 have 100 and 140 original sample sizes, respectively. 
The Monte Carlo algorithm was applied for bootstrapping to draw new 
samples from the empirical samples with replacement with size n. The 
bootstrapping produced a total 1200 number of resamples data based on 
the mean bootstrapping approach. θ statistic for each bootstrapping 
sample was estimated, and then bootstrapping distribution was 
computed. 

Accordingly, conducting bootstrapping to θ value of 200 resampling 
size (n) in C1, 95% confidence intervals for the median equaled to 
0.07312< x <0.07906. Also, conducting bootstrapping to θ value of 200 
resampling size (n), 95% confidence intervals for the mean equaled to 
0.07256 < x− <0.07584 (so, C1 mean bootstrap is 0.07420, which is very 
close to the mean of C1 original sample data (0.074212)). The boot-
strapping Standard Error (SE) was calculated through σ*̅̅̅̅n*√ , where n* is 
the resampling size and σ* is the bootstrapping standard deviation. 
Bootstrapping Standard Error (SE) for C1 has been measured as 
0.00006094, which is much lower than the Standard error of the C1 
original sample data (i.e., 0.000913041). The same procedure was 
applied to C2 and C3. In C2, conducting bootstrapping to θ value of 
resampling data (n* = 500), the 95% confidence interval for the median 
equaled to 0.0608< x <0.0708, and for the mean equaled to 
0.06556 < x− <0.07178 (so, C2 mean bootstrap is 0.068658, which is 
very close to the mean of C2 original sample data (0.06866)). The 
bootstrapping Standard Error (SE) for C2 has been estimated as 
0.00005998, which is lower than the Standard error of C2 original 
sample data (0.00091304). For C3, using bootstrapping to θ value of 
resampling data (n* = 500), the 95% confidence interval for the median 
of the C3 equaled to 0.00871< x < 0.00914, and for the mean equaled 
to 0.009143 < x− < 0.00881 (hence, the C3 mean bootstrap is 0.008928, 
which is very close to the mean of C3 original sample data (0.0089857)). 
The bootstrapping Standard Error (SE) for C3 has been estimated as 0. 
0.000003535, which is lower than the Standard Error of C3 original 
sample data (0.000008349). 

The similar procedure was conducted to other bootstrapping met-
rics; bootstrapping median (x*), bootstrapping mean (x−*), bootstrapping 
standard deviation (σ*), and bootstrapping standard error of the mean 
(σ*

x−), as presented in Table 6.  

i. median Box-Whisker plot: 

According to Table 6 and Fig. 6, C1.1 has the largest maximum value 
(0.213) in C1 (although it is the outlier of the box); in contrast, C1.6 has 
the least minimum value (0.026). C1 plot shows that C1.1. has the most 
extensive total variation (i.e., data covered between Max-Min) 
(0.213–0.152 = 0.061), contrary to C1.6 (0.016). Among all sub- 
criteria, C1.2 has the largest level of variation (0.020), as 50% of en-
tries are covered within the upper and lower quartiles of the box 
(Q1:0.109–Q3:0.129). Contrary, C1.5 has the smallest level of variation 
(0.008) among all sub-criteria (Q1:0.041–Q3:0.049). C1 plot also de-
termines that most of the sub-criteria have skewness and inconsistent 
spread of data. For instance, C1.6 has the largest skewness (0.0015 left 
skewness), as 25% of data is covered within Q3 (0.0365) and Q2 
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(0.0350). However, C1.7 has almost symmetrical data spread as Q2 (x̃ =
0.039) placed precisely in 25% of the interquartile range. Referring to 
the Box-Whisker plot for C2, C2.1 has the largest maximum value 
(0.183) and also has the largest total variation (0.183–0.119 = 0.064), 
which is even greater than C1.1 (i.e., 0.061). In C2, C2.3 has the smallest 
total variation (0.040), while both the upper extreme and lower extreme 
are the outliers. Also, this plot determines that C2.1 has the largest level 
of variation (0.0215) as the upper-lower quartiles have the largest 
interquartile range (Q1:0.1398–Q3: 0.1613). The level of variation of 
C2.1 is even larger than C1.1 (0.020). In opposite, C2.4 has the smallest 
level of variation (0.006), which is even smaller than C1.5 (0.008). 
Although all sub-criteria in C2 has skewness, C2.4 has a significant 
skewness compared to other sub-criteria. C2.4 has right skewness where 
25% of the data is covered within Q1 and Q2 (0.0010), which even 
smaller than the skewness of C1.6 (0.0015). The median Box-Whisker 
plot of C3 reveals that C1.3 has the largest total variation (0.007), 
while C3.6 has the smallest total of variation (0.003). C3.2 has the 
largest level of variation (0.0025), while C3.6 has the smallest level of 
variation (0.000). Exempt to C3.6, C3.7 has the significant skewness 
(0.000 left skewness), then C3.3 with 0.003 left skewness.  

ii. mean Box-Whisker plot: 

According to Fig. 6 and Table 5, all criteria have almost similar be-
haviors in their median, mean, Standard Deviation, and Standard Error 
Box-Whisker plots. All criteria have consistent IQRs and total variations 
in their plots; for instance, in all Box-Whisker plots of C1, C1.1 has the 
largest maximum value (0.213), and C1.6 has the least minimum value 
(0.026). In all plots of C2, C2.1 has the largest maximum value (0.183), 

and C2.5 has the lowest value (0.015). Meanwhile, each criterion ob-
serves slightly different behaviors of mean, Standard Deviation, and 
Standard Error plots. The mean Box-Whisker plot of C1 shows similar 
skewnesses to the median plot’s skewnesses, although the median plot 
has slightly higher skewnesses. The median plot of C1.6 had the 
largest skewness (i.e., 0.0015 left skewness). Similarly, C1.6 has the 
largest skewness (0.0031) in the mean plot, as 25% of its data is 
covered within Q3 (0.0365) and Q2 (0.0334). C2 also has similar 
behavior of median and mean Box-Whisker plots. Some of the sub- 
criteria in C2 (i.e., C2.4 and C2.5) have even smaller skewness; for 
instance, C2.4 has a significantly smaller mean skewness 
(Q2:0.032–Q1:0.031 = 0.001) than its median skewness 
(Q2:0.0343–Q1:0.031 = 0.0013). In opposite to C1 and C2, sub-criteria 
of C3 have slightly higher consistency in the mean plots than their 
median plots. It is highly observable in the case of C3.2. It has median 
right skewness (Q2:0.0130–Q1:0.0127 = 0.0003), which is higher in the 
mean plot (Q2:0.0136–Q1:0.0127 = 0.0006; right skewness).  

iii. standard deviation Box-Whisker plot: 

In general, Standard Deviation and Standard Error plots have similar 
behaviors in all criteria. Standard Deviation (σ) is generated based on 
the mean value using the equation σ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑
(xi−μ)2
N

√
; where, μ is the mean., 

N is sampling size, and xi is the entry values (i.e., ANP normalized 
weighted values). Hence, the middle line in the Standard Deviation box 
is the mean. Referring to Table 6, calculating Standard Deviation (σ) as 
the 2nd quartile of each box has shown that Standard Deviation (σ) of 
most of the sub-criteria has been represented as outliers (see Fig. 6). For 
instance, Standard Deviation (σ) of six sub-criteria in C1 are outliers 

Fig. 6. Sensitivity indices (median (x), mean (x−), standard deviation (σ), and standard error of the mean (σx−)) using Box-Whiskers plot technique on the URPI 
assessment model based on bootstrap resampling (Note: C1. Geotechnical functions, C2. Water quality and treatment and C3. Structural and physical land-
scaping functions). 
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(exempt to C1.4 and C1.7), which indicates that most of the sub-criteria 
have deviations to their means. It was similarly observed in C2 and C3.  

iv. standard Error of the mean Box-Whisker plot: 

According to Fig. 6, the Standard Errors (SEs) were mostly repre-
sented as outliers. According to the Standard Error equation, SE = σ̅

n̅√ , 
where, σis the standard deviation and n is the sample size, SE is a portion 
of the mean. Hence, the middle lines in the Standard Errors boxes are 
associated to mean. According to Table 6, in all three criteria, outliers 
have very small values and lied on zero-value lines, meaning all outputs 
have likely zero errors. 

5.5. Parallel coordination 

The research has conducted parallel coordination to validate the 
results of Box-Whisker plots. The parallel coordination is such a sensi-
tivity visualization method useful for high-dimensional datasets. The 
parallel coordination visualizes the data through a series of data points 
on an n-dimensional space in n-parallel vertical profiles spaced equally 
(Achtert et al., 2013). The parallel coordination measures the quanti-
zation level for each data point through a dynamic normalization. 
Ordering, scaling, and rotation of the axis are the critical features of the 
parallel coordination plot. The method is relatively a time-series visu-
alization method; however, its parallel profiles (i.e., axis) do not follow 
the natural time order, while the axis follows the instructive order of 
data and interpolation of consecutive pairs of criteria (Moustafa and 
Wegman, 2006; Inselberg, 2009). The series of data points on an n- 
dimensional space make a polyline with vertices on the parallel profiles, 
where “the position of the vertex on the ith profile corresponds to the ith 
coordinate of the point” (Wikipedia, 2020). 

The research has plotted the parallel coordination for each criterion 
separately. The method has reordered the entries for each axes from 
minimum entry to maximum entry. Each profile presents a sub-criterion, 
and the points are the ANP normalized weighted values extracted from 
Table 2. According to Fig. 7a, the parallel coordination plot of C1 was 
blushed based on C1.1, which has the largest normalized weighted value 
(WC.1.1 = 0.213) in the group of eight sub-criteria. In this regard, the 
upper-half subset of data (range: 0.183–0.213) was selected on C1.1 
axes. According to the selected subset data, the blushed polylines were 
distributed with different behaviors in other sub-criteria axes. It was 
mirrored as the middle of C1.2 axes, the lower-half of C1.3 axes, while 
discretely spread along other axes. Fig. 7a shows that the density of data 
spread in the C1.2 axis is significantly more than other axes, with 6 data 
points in the range of 0.127 < W < 0.131. It is similarly observed in the 
C1.1 axis but with 5 data points in the range of 0.166 < W < 0.185. 
Referring to Fig. 7b, the plot of C2 was blushed based on C2.1, 
comprising the largest normalized weighted value (WC.2.1 = 0.183) in 
the group of five sub-criteria. According to Fig. 7b, selecting a subset 
data range of 0.120 to 0.138 has resulted in the most concentrated group 
of polylines throughout the C2 plot. According to Fig. 7b, the density of 
data distribution is mainly observed in C2.1 axes covering 5 data points 
in the range of 0.152 < W < 0.161. Next, density occurred in C2.2 axes 
with a smaller range covering 11 data points (0.75 < W < 0.083). The 
plot of C3 was blushed based on C3.1, which has the largest normalized 
weighted value (WC.3.1 = 0.024) in the group of seven sub-criteria (see 
Fig. 7c). The data points are wide-spread; meanwhile, the C3.7 axis has 
the largest densities, especially for the 0.05 normalized weighted value, 
covering 10 points, followed by the 0.04 normalized weighted value 
covering 8 points. 

6. Discussion 

Rapid urban growth and environmental degradation persuade urban 
ecologists and urban designers to utilize water resources for sustainable 

land development. It needs a superior understanding of land manage-
ment for incorporating natural land–water resources in the built envi-
ronment while ensuring the hydro-ecological, environmental and 
biological benefits. These issues encourage urban professionals to 
establish alternative design strategies for water problems in local and 
global scales. The Water Sensitive Urban Design (WSUD) is one of the 
trustable solutions and strategies in many cities of the world. WSUD can 
mitigate the effects of urban heat island (UHI), climate change, and 
uncomfortable thermal environment (Huong and Pathirana, 2013). 
WSUD significantly retains water in the urban landscape and improves 
stormwater management through stormwater harvesting techniques, 
soil infiltration, and moisture technologies to support ecological, envi-
ronmental, and social needs (Coutts et al., 2013). WSUD technologies 
can handle a trade-off between urban climate degradation and water 
consumption (Mitchell et al., 2006); however, the capacity of storm-
water harvesting and stormwater management depends on the water 
demand policy of the region and its climate. Accordingly, the current 
research attempted to promote the ecological and environmental di-
mensions of WSUD through multifunctional retention pond design and 
development in residential communities. 

The research findings indicate that the vegetated filter, grass swales, 
and buffer strips are the most practical solutions in multifunctional 
retention pond design, particularly for a retention pond with a seasonal 
park function. Such solutions act similarly for serving stormwater slowly 
down, which improves evapotranspiration and microclimate. In well- 
irrigated green spaces (such as retention ponds and retention basin 
parks), the evapotranspiration rates are three times more than its sur-
rounding residential neighborhoods, and the rate of oasis effect is higher 
(especially in warm and dry weather cities) (Oke, 1987; Coutts et al., 
2013). Therefore, the multifunctional retention pond can increase the 
soil capacity as a heat sink while reducing the temperature of the lower 
surfaces (exempt to the water-resistant surfaces) through evaporative 
cooling. Besides, the surface, canopy air temperature, and soil of an 
irrigated retention pond can be cooler during the day because of the 
evapotranspirational cooling phenomenon. Significantly, the multi-
functional retention pond in dry seasons (while acting as a park) can 
reduce the local air temperatures through evaporative cooling. The 
reduction in extreme heat weather is 0.5 to 1 K. Notably, this condition 
may have higher humidity than normal conditions, and also, higher soil 
moisture than normal heat capacity (Grossman-Clarke et al., 2010). It 
may cause the soil to cool not rapidly as dry soils at night-time. 
Spronken-Smith and Oke (1998) state that water irrigation of green 
spaces in the parks (along with shade and surface albedo) is an impor-
tant control of surface temperature through the intensity of PCI (park 
cool island) and evaporative effects, especially during the day. This issue 
is also an essential concern to the multifunctional retention ponds. 

The URPI assessment model can potentially modulate the pond space 
microclimate by reducing the impact of UHI, supporting the natural air 
ventilation, therefore, stabilizing diurnal temperature. Using the URPI 
model can manage and control the effects of hydroclimatic and biocli-
matic variabilities of land-cover changes (such as soil drought), dust 
hazards, and wind-borne air pollution. Also, using the URPI assessment 
model can significantly increase the land biodiversity by protecting the 
land’s aquatic ecosystem, improving rich biotopes to nurture flora and 
fauna. Meanwhile, it creates a public space for exercise, recreation, and 
social activities with neighbors and communities; besides, it improves 
aesthetic attractiveness, mental health, physical health, and affinity 
with nature. Collectively, the URPI model promotes the resilience, 
livability, and adaptability of neighborhoods and urban infrastructures 
through water-sensitive strategies and water-sensitive urban design. It 
may promote property values and the real estate and housing market of 
the communities as well. 

The URPI assessment model was implemented in the Boneyard Creek 
retention pond. It is such a multifunctional pond that focuses on 
stormwater management, transforming the wasted space effectively into 
the recreational park, and providing functional facilities and amenities 

A. Keyvanfar et al.                                                                                                                                                                                                                             



Ecological Indicators 124 (2021) 107317

17

Fig. 7. The parallel coordination of the URPI assessment model; a) C1. Geotechnical functions, b) C2. Water quality and treatment, and c) C3. Structural and physical 
landscaping functions. 
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for surrounding residential areas. The Boneyard Creek retention pond 
has a subtropical climate and almost uniform rainfall patterns 
throughout the year. It has a great demand for irrigation that coincides 
with a large rainfall storage capacity. By completing the model imple-
mentation and case evaluation, it has received <70% consensus for a 
few sub-criteria. So, the Boneyard Creek pond must be improved in 
terms of backfill material (WSMC1.5 = 0.662), overflow route (WSMC1.6 
= 0.626), seepage control (WSMC1.7 = 0.699), facilities for pollutant and 
flow-rate control (WSMC1.7 = 0.638), and vegetation (WSMC1.7 =
0.571). The group of experts has suggested the following recommen-
dations to rectify the weaknesses observed at the Boneyard Creek pond;  

▪ It needs to improve the hydro-technics and drainage system to 
delay the surface water runoff to small water reservoirs, raise 
the water level and channels, and drainage water retention 
from surrounding streets to allow percolation of water in 
adjacent unsealed areas. Then the site can store and release the 
flow gradually through outlet control structures.  

▪ Proper spatial use of catchment is important in the water 
management of the Boneyard Creek pond. Creating spatial 
order in the rapid outflow of rainwater is possible through 
developing arable fields, grasslands, and swamps, and also 
creating protective plant belts like shrubs and trees.  

▪ It needs a deep penetration root system that can grow up to 3 m 
in length. Long roots are useful in improving the stability of 
earth slope, providing reinforcement by holding the soil parti-
cles together, and removing subsoil mixture and detrimental to 
slope stability.  

▪ Riparian vegetation also helps protect the riverbank, providing 
a breeding ground for aquatic life, and temporarily holding 
overflow while trapping sediments and pollutants. 

In the second phase of the research, the sensitivity and uncertainty of 
the URPI model’s outputs have been investigated by applying the Global 
Sensitivity Analysis (GSA) methods and techniques. GSA has a 
vulnerability-based and bottom-up approach for estimating un-
certainties of the decision-making models. GSA can predict the effects of 
management actions, assisting the robust decision-making concerning 
the assumptions and inputs of the uncertain models (Saltelli and 
D’Hombres, 2010; Wilby and Dessai, 2010). The GSA sensitivity indices 
vary, such as output distribution statistics and the correlation between 
inputs and output. Indeed, computing all these indices may not be 
possible for most of the models; therefore, GSA measures the sensitivity 
indices approximated from a sample input for output estimation (Saltelli 
et al., 2008; Noacco et al., 2019). GSA methods selection directly im-
pacts the sensitivity results; hence, using multiple methods for GSA is 
highly recommended. In this regard, the current research has applied a 
series of sensitivity analysis methods and techniques using various tools 
and toolboxes (i.e., SAFE toolbox, XLMiner Data Visualization toolbox, 
Analytic Solver, and Microsoft Excel). This research has measured the 
following GSA sensitivity indices; Cumulative Distribution Functions 
(CDF), Probability Density Function (PDF), Scatterplot-Histogram Plot, 
Box-Whisker Plot, and Parallel Coordination. As each GSA method es-
timates a specific aspect of the model’s outputs distribution, these 
methods were applied validating the results of one another as well. The 
research has conducted the bootstrapping resampling in computing the 
sensitivity indices since the bootstrapping method can deliver an accu-
rate analytical inference of inputs-outputs correlation and interactions 
in the whole network of the URPI model. 

Cumulative Distribution Functions (CDF) indicated that the outputs 
of the URPI model are properly and empirically distributed (R2 =
0.8009), with minor regression variance to the theoretical distribution 
(R2 = 0.9424). Also, the Kolmogorov-Smirnov (KS) test was conducted 
to understand whether the actual (empirical) distribution curve is the 
proper representative of the standard distribution curve. KS test resulted 
that the average maximum vertical distance between the two curves is 

3.8491 as an acceptable value. Probability Density Function (PDF) has 
shown that the normal distribution curve of the outputs is lognormal 
with 1.376 right skewness and 1.099 kurtoses. The considerable skew-
ness and kurtosis indicate that most of the URPI model’s outputs fall 
within the intervals; however, the mean and median of the outputs were 
more significant than the mode. It occurred because most of the sub- 
criteria have been rated within the higher ranges (±3 to ±6) of ANP 
pair-wise comparisons, indicating no significant correlation among 
them. However, according to PDF results, the variability of sub-criteria 
is significant (close to 90%) in the first group. In ANP, the higher rating 
ranges determined the lower inter-dependency between two sides of a 
pair. For instance, C3.3 Slope control, C3.4 Pedestrian trails, and C3.7 
Landscape habitat retention have received lower dependency rates in 
most of their all pair-comparisons and therefore gained smaller limited 
weighted values. The results of WSM also support this finding (see 
Table 4), where the low limited weights of C3.3, C3.4, and C3 sub- 
criteria have resulted in lower Final-WSM consensuses. The research 
has analyzed the regression of criteria pair-wisely, to measure the degree 
of linear correlation. The multiple regression analysis has shown that all 
three criteria are positively and linearly correlated and have a proximate 
coefficient of determination (r2) (0.8593, 0.9059, 0.8544, respectively). 
The histogram analysis supports these findings. According to histogram 
analysis, the data distributions in the three criteria are almost similar. 
However, the first group in the three histograms is the most dominant. 
The observed similarity is due to the higher rating range (±3 to ±6) 
selected by the model evaluators during ANP pair-wise comparisons, 
which shows the insignificant correlation among sub-criteria. 

Furthermore, using an input–output sample and employing the 
Monte Carlo simulation can approximate the sensitivity indices (Noacco 
et al., 2019). Indeed, variance-based indices have some computational 
limitations. If the output distribution is highly-skewed or multi-modal, 
the variance would not be a practical indicator. For this reason, this 
research has selected the Box-Whisker technique as an appropriate 
method for variance-analysis of URPI model outputs. Meanwhile, the 
sampling size plays a critical role in GSA. It should be accurately defined 
to achieve a great balance between the robust result (considering sample 
independent) and the computational cost of GSA (Pianosi et al., 2016; 
Wagener and Pianosi, 2019). Hence, the research has conducted the 
bootstrapping resampling for sensitivity analysis of the Box-Whisker 
method. The research demonstrated that the original sample size (n =
400) and bootstrapping resampling (n*=1200) were large enough to 
obtain reliable and robust results. According to Box-Whisker median 
plots, the water quality and treatment (C2) has the largest total variation 
(0.064) for soil retention (C2.1), where 60% of outputs in C2 are below 
the average median bootstrapping threshold (x̃C2* = 0.0658). After the 
water quality and treatment (C2), geotechnical functions (C1) has the 
largest total variation (0.061) for soil investigation (C1.1), where 56% of 
outputs are below the average median bootstrapping threshold (x̃C1* =
0.0760). It was similarly observed in the criterion structural and phys-
ical landscaping functions (C3) for the sub-criterion Outlets with a 
0.0089 bootstrapping threshold (x̃C3*). It indicates that the outputs of all 
three criteria have been equally fallen into both sides of the median. 
However, according to histogram analysis, the outputs are lognormally 
distributed, and the mean is shifted to the left. It occurred because most 
sub-criteria have received ANP higher rates (i.e., ±3 to ±6) during pair- 
wise comparisons, which induced lower limited weights. Furthermore, 
the research found that water quality and treatment (C2) has the largest 
level of variation (0.0215) for soil retention. It was followed by 
geotechnical functions (C1) with a 0.0200 level of variation derived by 
soil investigation. The vegetation (C3.6) is the most significant consis-
tent sub-criterion in the URPI model, since it has equal upper quartile 
(Q3) and lower quartile (Q1) (0.004), meaning that it was rated consis-
tently during ANP pair-wise comparisons. The behaviors of Box-Whisker 
mean plots are very similar to the median plots. It is also observed that 
bootstrapping values for the median and the mean are proximate in all 
three criteria. The research found more than 60% of outputs have placed 
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below the average mean bootstrapping threshold in all three criteria. 
Notably, the sub-criteria below the mean bootstrapping threshold are 
significantly consistent than the upper threshold sub-criteria in all three 
criteria. Moreover, the behaviors of Box-Whisker standard deviation (σ) 
and standard error (SE) plots are very similar. As both standard devia-
tion (σ) and standard error (SE) measures are mean derivatives, the same 
bootstrapping thresholds were plotted for each criterion. In compassion 
to Box-Whisker median and mean, the standard deviation and standard 
error plots have many outliers, representing the standard deviation and 
standard error values. It was expected since the IQRs of each criterion 
are consistent (see Table 6), so the small values of standard deviations 
(σ) and standard errors (SE) have placed out of the IQRs. 

The results of Parallel Coordination have determined that data 
density in soil investigation (C1.1) and infiltration rate (C1.2) are 
expressively more than the other axes in the criterion geotechnical 
function. In the water quality and treatment criterion, the density of data 
distribution was principally observed in soil retention (C2.1) and spill-
ways (C2.2). It was observed in the landscape habitat retention (C3.7) 
axis in the Structural and physical landscaping functions (C3). 
Comparatively, data spread in the three criteria are diverse. Spillway 
(C2.2) and landscape habitat retention (C3.7) axes have covered eleven 
data points and ten data points, respectively. It determines they are the 
most central nodes in the whole network of the URPI model because they 
have the largest centrality degrees in the whole network. With a 
considerable gap, data spread is much lower in the following sub- 
criteria; infiltration rate (C1.2) with six data points, soil investigation 
(C1.1) with five data points, and soil retention (C2.1) with five data 
points. Hence, C1.2, C1.1, and C2.1 have moderate centrality degrees in 
the whole network of the URPI model. Besides, the data range of blushed 
zones varies in the three criteria. The largest data range was observed in 
the soil retention (C2.1) axis for the range of 0.119 < W < 0.183. Ac-
cording to the normalized weighted values (see Table 2), soil retention 
(C2.1) has the largest Eigenvector centrality in the whole network. 
Hence, it is the most connected and effective sub-criterion impacts other 
sub-criteria and criteria in the URPI model’s network. Next, the largest 
data range was observed in the Soils Investigation (C1.1) axis for the 
range of 0.152 < W < 0.213. In contrast, the smallest data range was 
observed in the slope control (C3.3), pedestrian trails (C3.4), and 
landscape habitat retention (C3.7) axis, with 0.003 Eigenvector cen-
trality. It indicates that these sub-criteria affect minor other sub-criteria 
and criteria of the network. 

7. Conclusion 

Despite the massive pressure on the ecosystem and natural envi-
ronment, rapid urban development provides opportunities for water- 
sensitive urban design and planning. Unlike conventional water sup-
ply approaches, incorporating water-sensitive urban design and plan-
ning aids us to depart from the conventional urban community design to 
such a sustainable urban preserving natural environment and 
ecosystem. In particular, water-sensitive strategies and WSUD can 
enhance urban resilience and protect such water-sensitive neighborhood 
design and community development against negative impacts of UHI, 
climate change, climate variability, and population growth. WSUD is the 
cross-section of water resources, land-use planning, urban planning, 
spatial planning responses to climate change, flood and GHG emission 
adaptation, and mitigation strategies, while guaranteeing people well- 
being, urban livability, and a healthy city. WSUD should be compre-
hensive, ranging from a straightforward approach to complicated plans 
supporting green infrastructure towards sustainability. Complementing 
the Sustainable Urban Drainage System (SUDS) and Low Impact 
Development (LID) programs can enhance the impacts of WSUD in both 
water quality and management. 

This research has developed the Urban Retention Pond Index (URPI) 
assessment model for measuring and quantifying the performances and 
capabilities of the multifunctional retention ponds in stormwater 

management. The research has promoted knowledge in natural water 
purification through retention ponds and surroundings based on WSUD 
principles. WSUD cannot be a single program, but it is set off with other 
programs to consolidate local or global impacts. Therefore, using the 
URPI model aids the local and state authorities to implement WSUD 
beyond a strategy or policy. It aids in making revisions or improvements 
to their regulatory urban design and planning guidelines while pro-
moting the fundamentals of stormwater management (i.e., ecological, 
biological, recreation, and aesthetic). The URPI model is a universal 
decision support tool that aids urban planners and ecologists to assess 
and enhance the retention pond’s ecosystem and its built environment 
by offering environmental, habitat, and recreational benefits. The URPI 
model has clustered the design features of multifunctional retention 
ponds into three criteria; Geotechnical functions, Water quality and 
treatment and Structural and physical landscaping functions. Each cri-
terion involves a series of sub-criteria, a total of twenty sub-criteria. The 
URPI model has used the ANP method to measure and determine the 
limited weight of each sub-criterion. The research has found that soil 
investigation has gained the largest limited weight (0.170), followed by 
soil retention (0.156) and infiltration rate (0.108). Despite using the 
URPI model in any urban ponds worldwide, it was implemented at the 
Boneyard Creek retention pond in Illinois, the U.S. The model imple-
mentation has shown that the Boneyard Creek retention pond has 
earned grade A, meaning it can manage stormwater efficiently and 
effectively. 

The research has conducted GSA on the URPI model to estimate its 
dominant controls and decision-making performance. The URPI is such a 
qualitative-based decision-making tool; hence, the GSA ranking-based 
sensitivity analysis methods and techniques have been employed for 
this study. Two approaches of sensitivity analysis were applied in this 
study; i) Main effect index (it is to measure the direct effect of any single 
input factor), and ii) Total effect index (it is to measure the direct effect 
and interaction effects of any single input factor on other input factors). 
The main-order indices and total-order indices are associated through 
the output variance decomposition and independent input factors, 
which signifies the URPI model’s structure. The research has applied 
Box-Whisker Plot and Parallel Coordination methods, which induce the 
Main effect indices. Besides, the research has conducted the Cumulative 
Distribution Functions (CDF), Probability Density Function (PDF), and 
Scatter-histogram plot with the total-effect approach. 

CDF determined that model outputs are empirically distributed with 
minor regression variance to the theoretical distribution. The KS test 
demonstrated the average maximum vertical distance between the two 
empirically, and theoretical curves are acceptable. PDF resulted that the 
normal distribution curve of the model outputs is lognormal. The sig-
nificant skewness and kurtosis of the PDF’s normal curve indicated that 
most of the outputs fall within the intervals where the mean and median 
are more significant than the mode. It occurred since most of the sub- 
criteria have received higher rates during ANP pair-wise comparisons, 
which results in a lower inter-dependency between two sub-criteria. The 
PDF determined the insignificant correlations among the sub-criterion in 
the whole network of the URPI model. The results of WSM support these 
findings, where the lower limited weights of some sub-criteria induced 
the lower Final-WSM consensuses. The research has conducted GSA 
multiple regression analysis, while it might not be powerful and accu-
rate enough for complex interactions among input factors. Therefore, 
this study has conducted the Box-Whisker technique to validate the re-
sults more accurately. The multiple regression analysis resulted in a 
proximate coefficient of determinations, and consequently, confirmed 
that three criteria are positively and linearly correlated. The histogram 
analysis supported these findings, where outputs distributions of three 
criteria are almost similar. It occurred because these sub-criteria were 
mostly rated in higher ranges (±3 to ± 6) in ANP pair-wise comparisons, 
which resulted in a lower inter-dependency among sub-criteria either in 
criterion or the whole network. 

Furthermore, the research has conducted the Box-Whisker sensitivity 
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analysis technique for output distribution variance analysis of the URPI 
model. Accordingly, the research has conducted four Box-Whisker 
sensitivity indices; median (x), mean (x−), standard deviation (σ), and 
standard error of the mean (σx−) using bootstrapping resampling. The 
Box-Whisker median plots have shown that the sub-criterion for soil 
retention made the criterion water quality and treatment the largest 
total variation and the largest level of variation in the whole network of 
the URPI model. It was followed by the geotechnical function (based on 
the soil investigation sub-criterion), and structural and physical land-
scaping functions (for the outlet design sub-criterion). It indicates the 
outputs of each criterion have been equally fallen into both sides of their 
median. Meanwhile, vegetation is the most significant consistent sub- 
criterion in the URPI model due to receiving consistent ratings during 
ANP pair-wise comparisons. The research found that the behaviors of 
Box-Whisker mean plots are very similar to the median plots. The Box- 
Whisker mean plots have shown that, generally, the sub-criteria below 
the mean bootstrapping threshold are significantly consistent than the 
upper threshold in all three criteria. The behaviors of Box-Whisker 
standard deviation (σ) and standard error (SE) plots are also very 
similar. These plots have shown the standard deviation and standard 
error values as outliers lied on the zero lines, meaning the outputs of the 
whole network as zero errors. 

The results of Parallel Coordination have determined that data 
density of the criterion geotechnical function is the largest, followed by 
water quality and treatment and Structural and physical landscaping 
functions, respectively. It was found that the data density of the soil 
investigation and infiltration rate are expressively more than other sub- 
criteria in the criterion geotechnical function. Meanwhile, soil retention 
and spillways have the most dens data distribution in the criterion water 
quality and treatment and Structural, and the sub-criterion landscape 
habitat retention of the Structural and physical landscaping functions. 
Moreover, the research found that data spread in the three criteria are 
comparatively diverse. The spillway axis (of the 2nd criterion) and 
landscape habitat retention axes (of the 3rd criterion) have covered the 
largest numbers of data points, eleven and ten data points, respectively. 
It determined that Spillway and landscape habitat retention are the most 
central nodes in the whole network of the URPI model and have the 
largest centrality degrees. Next, the infiltration rate, soil investigation, 
and soil retention have moderate centrality degrees in the whole 
network. Additionally, the research found that the data range of blushed 
zones varies in the three criteria, as the largest data range was observed 
in the soil retention axis (in the 2nd criterion) and soils investigation (in 
the 1st criterion), which indicates they have the largest Eigenvector 
centralities in the whole network. Hence, these sub-criteria are the most 
connected sub-criterion affecting other sub-criteria and criteria in the 
URPI model’s network. 

The UPRI model emphasizes on the collaborative team of experts 
practicing water-sensitive urban design and planning, as well as, 
collaborative cooperation among stakeholders, local authorities, and the 
government. Using the URPI model, the urban designers and ecologists 
can evaluate the characteristics, opportunities, and threats of the 
retention pond site across water-sensitivity disciplines (ecology, land-
scape architecture, drainage engineering, biology, etc.) local and 
regional levels. Accordingly, the model user can operate the most suit-
able Best Management Practice (BMP) of stormwater management and 
infrastructure planning (such as the local design of housing layout, road 
layout, public space, parking space, streetscape, etc.). 

In future works, the Climate Sensitive Urban Design (CSUD) of 
multifunctional retention ponds can be investigated, such as water 
quality, surface energy balance, climate variability, vegetation types, 
landscaping, as well as evapotranspiration and heat-storage. In this re-
gard, an optimal design of multifunctional retention ponds can be 
studied, which maximizes the cooling and evapotranspiration capac-
ities. Furthermore, multi-disciplinary research is noteworthy. Inte-
grating sociology, energy efficiency, food production, and low-carbon 

emission disciplines in multifunctional retention ponds design may 
provide a more comprehensive WSUD platform for the URPI model. 
Future studies can also focus on the rural and suburban areas that face 
floods, water pollution, and soil runoff frequently. Besides, ANP can be 
coupled with other decision-making methods to reduce the in-
consistencies and uncertainties of the URPI model, while increasing 
accuracy and validity. Finally, future research can conduct the calibra-
tion sensitivity analysis of the model to detect limitations making un-
certainties in the network of sub-criteria. 
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