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Abstract. Flash flood is common problem in the developed or developing country especially in 

urban areas. This is due to the changes of land use, poor planning of drainage system, 

deforestation and unplanned land use and etc. Flash flood susceptibility modelling (FFSM) for 

urban area is important to avoid the loss and etc. FFSM can be vital component and essential 

tools for planning and management of natural disaster and environmental. The objective of this 

paper is to review selected paper on flash flood susceptibility modelling using Geographic 

Information System (GIS) coupling empirical models. A lot of methods have been coupling 

with GIS to developed flood susceptibility modelling, for example, Weight of Evidence, 

Random Forest, etc. However, there is still lack of susceptibility model for flash flood. The 

GIS coupling method can improve the accuracy of flood susceptibility modelling. Thus, this 

paper will review the ability of GIS coupling with empirical models for the flash flood 

susceptibility modelling. 

1. Introduction 

The occurrences of flash flood cannot be predicted and it is worst hydro-meteorological disaster [1]. 

Flash flood disasters occur frequently due to global climate change [2]. Flood events commonly cause 

destruction to agricultural crops and property, and may even result in the loss of human lives [3]. 

According to Elkhrachy [5], flash flood can be defined the flood which is begin in a short period of 

time and normally show high peak discharges. Elkhrachy [5] added usually the geomorphic low-lying 

zones will hit by flash flood when heavy rainfall.  

By develop the flood susceptibility mapping and modelling, it can help local authority in flood 

management to identify the most sensitive zones for civil protective actions, assess damages, and 

make valid urban planning [5]. By taking the definition of landslide susceptibility mapping, 

Santangelo et al. [6] defined the susceptibility mapping as the probability that a risk occurrence 

happens in a particular area and in a not determined date. Susceptibility mapping was developed based 

on the relationship of the conditioning factors with the distribution of previous events [6]. That means 

susceptibility modelling is actually just an estimate of “where” disasters such as landslide or flood are 

likely to occur. Susceptibility map also known as natural hazard potential map for some groups.  

According to Reichenbach et al. [7], there are confusion between “susceptibility” and “hazard” 

modelling. Even though these two terms usually used as same meaning but it these two words stating 

different models [7]. Reichenbach et al. [7] added that susceptibility model does not consider the size 

of natural hazard e.g., the length, width, depth, area or volumes. Meanwhile, hazard model would 

predicting “where” a flood or landslide will take place, “when” or “how frequently” it will happen, 

and “how large” it will be [8]. Flood susceptibility map will manage any future flood problems [9] and 

important step to predict and manage the future flood event [10].  
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2. Modelling Methods 

There are many methods of flash flood susceptibility mapping; traditional bases hydrological methods, 

statistical, and machine learning based methods.  Rule-based and automated modelling methods have 

outperform outdated traditional flood models due to their more suitable for hazard analyses [11]. In 

recent times, researchers have coupling many methods with GIS to increase the accuracy prediction of 

flooded areas (flood susceptibility). These methods are including qualitative method such as analytical 

hierarchy process (AHP), quantitative techniques such as weight of evidence (WoE) and frequency 

ratio (FR), and machine learning method such as artificial neural networks (ANN). However, there are 

still lack of studies have been carried out for flash flood susceptibility modelling. This paper aims to 

review selected study of flash flood susceptibility modelling.  
 

3. Flash Flood Susceptibility Modelling Study 

Bui et al. [12] is using feature selection method (FSM) and tree based ensemble methods. The study 

area located at the Bao Yen district and the Bac Ha district of Lao Cai Province, Vietnam. Bui et al. 

[12] were used 654 floods and 12 conditioning factors (stream density, toposhade, slope, curvature, 

stream power index (SPI), elevation, topographic wetness index (TWI), rainfall, aspect, normalize 

difference vegetation index (NDVI), soil type cover and lithology). This method used a fuzzy rule 

based algorithm (FURIA) which is as attribute evaluator, while Genetic Algorithm (GA) as the search 

method. This is to get best set of conditioning factors used in modelling assessments. Then, the 

FURIA-GA method was combined with LogitBoost, Bagging and AdaBoost ensemble algorithms for 

prediction model. Based on the result, FURIA-GA-Bagging (93.37%) outperformed the other 

ensemble algorithm, FURIA-GA-LogitBoost (92.35%) and FURIA-GA-AdaBoost (89.03%). The 

flash flood susceptibility mapping developed by using FURIA-GA-Bagging method is shown in 

Figure 1. 

 

 
Figure 1. Flash flood susceptibility mapping developed by using FURIA-GA-Bagging method [12] 

  

Youssef and Hegab [13] were applied Analytic hierarchy process (AHP) which is can categorize in 

qualitative method. The main objective of this study is to examine the effectiveness and reliability of 

AHP. The location of study area is Ras Gharib, Egypt. This study also using high-resolution images 

obtained after previous flood events in 2016. These high-resolution images are used to validate the 

susceptibility model by using a slicing technique and historical flood data. Youssef and Hegab [13] 

only used 7 flood factors - distance from streams, slope, curvature, lithological units, angle, elevation, 

and topographic wetness index (TWI). However, results of this study shown that AHP give good result 
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for flash flood susceptibility which is 83.3%. The flash flood susceptibility mapping developed by 

using AHP method is shown in the Figure 2. 

 

 
Figure 2. Flash flood susceptibility mapping developed by using AHP method [13] 

 

Ngo et al. [14] analysed flash flood in two districts Bac Ha and Bao Yen, Vietnam by using  machine 

learning techniques which are Firefly algorithm (FA), Levenberg–Marquardt (LM) Backpropagation, 

and an artificial neural network (FA-LM-ANN), LM-ANN, FA-ANN, support vector machine (SVM) 

and classification tree (CT). For this study, Ngo et al. [14] used 12 flood factors which are aspect, 

elevation, stream power index (SPI), slope, topographic wetness index (TWI), stream density, rainfall, 

curvature, normalized difference vegetation index (NDVI), lithology, toposhade, and soil type and 654 

flash flood locations were identified to evaluate the flash flood model. According to the results, the 

integrated FA-LM-ANN gives the good results which is 97.0% following by LM-ANN - 92.6%, FA-

ANN – 91.9%, SVM – 92.9% and CT – 90.8%. Figure 3 shows the flash flood susceptibility 

mapping developed by using FA-LM-ANN method.  

 

 
Figure 3. Flash flood susceptibility mapping developed by using FA-LM-ANN method [14] 

 

Khosravi et al. [15] has done the comparisons between Logistic Model Trees (LMT), Reduced Error 

Pruning Trees (REPT), Naïve Bayes Trees (NBT), and Alternating Decision Trees (ADT) which is 

these four methods is decision trees algorithms. The study area is located in Haraz watershed, northern 

Iran. The 201 flood points were identified and 11 flood factors were selected which are altitude, 

ground slope, curvature, river density, normalized difference vegetation index (NDVI), topographic 

wetness index (TWI), distance from river, land use, stream power index (SPI), rainfall, and lithology. 

The results show that the ADT is the highest AUC value – 97.6 %, followed by NBT – 97.4 %, LMT – 
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97.1% and REPT - 81.1%, respectively. Before that, Khosravi et al. [16] compare the results between 

statistical index, Shannon’s entropy, and weighting factor models for flash flood susceptibility model. 

For this study, Khosravi et al. [16] was used  211 flood locations were identified and 10 flash flood 

conditioning factors was used in this study area which are plan curvature, stream power index (SPI), 

land use, geology, distance from river, topographic wetness index (TWI), rainfall, slope angle, 

altitude, and normalized difference vegetation index (NDVI). The result show that the statistical index 

model with the prediction of 98.72% is the highest rate of prediction followed by weighting factor and 

Shannon’s entropy models with the 97.6% and 92.42% for the prediction rate. The flash flood 

susceptibility mapping produced by using Alternating Decision Trees (ADT) and statistical index (SI) 

are presented in the Figure 4. 

 

 
Figure 4. Flash flood susceptibility mapping produced by using Alternating Decision Trees (ADT) 

[15] and statistical index (SI) [16] 

 

Youssef et al. [17] were used bivariate (frequency ratio) and multivariate statistical models (ensemble 

frequency ratio and logistic regression) to develop flash flood susceptibility modelling in Jeddah, 

Saudi Arabia. In the study, 127 flood locations were identified and 7 flood factors were used to 

develop flash flood model which are slope, elevation, curvature, geological units, land use, soil drain, 

and distance from streams. The results showed that the prediction accuracy achieved using ensemble 

technique between Frequency Ratio (FR) and Logistic Regression (LR) has the best (91.3%) followed 

by the traditional Frequency Ratio method - 89.6 %. This results show that bivariate statistical analysis 

(BSA) method can improve by integrated with Multivariate statistical analysis (MSA) method. Table 1 

summarizes the methods used in flash flood susceptibility model. The flash flood susceptibility 

mapping developed by using multivariate statistical models (ensemble frequency ratio and logistic 

regression) is shown in Figure 5. 

 

 
Figure 5. Flash flood susceptibility mapping developed by using multivariate statistical models 

(ensemble frequency ratio and logistic regression) [17] 
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Table 1. The summarizes of previous flash flood susceptibility model studies. 
Authors Method Data/Conditioning Factors Finding/Result 

Bui et al. [12] The feature selection method (FSM), 

used a fuzzy rule based algorithm 

Fuzzy Unordered Rules Induction 
Algorithm (FURIA), as attribute 

evaluator, whereas Genetic Algorithms 

(GA) were used as the search method, 
in order to obtain optimal set of 

variables used in flood susceptibility 

modeling assessments. The novel 
FURIA-GA was combined with 

LogitBoost, Bagging and AdaBoost 

ensemble algorithms. 

654 flood locations were identified 

12 flood factors - Elevation, slope, 

aspect, curvature, TWI, SPI, 
toposhade, stream density, rainfall, 

NDVI, soil type cover and lithology 

cover 

FURIA-GA-Bagging - 93.37%  

FURIA-GA-LogitBoost - 92.35%  

FURIA-GA-AdaBoost -89.03%  
 

Youssef and 

Hegab [13] 

Analytical hierarchy process (AHP) 232 flood locations were identified 

7 flood factors - Slope, angle, 

elevation, distance from streams, 
lithological units, TWI, and 

curvature. 

AHP - 83.3%  

 

Ngo et al.  [14] Firefly algorithm (FA), Levenberg–

Marquardt (LM) Backpropagation, and 
an artificial neural network (FA-LM-

ANN), LM-ANN, FA-ANN, support 
vector machine (SVM) and 

classification tree (CT) 

654 flash flood locations were 

identified 
12 flood factors - Elevation, slope, 

aspect, curvature, TWI, SPI, 
toposhade, stream density, rainfall, 

NDVI, soil type, and lithology 

FA-LM-ANN -97.0% 

LM-ANN - 92.6%  
FA-ANN – 91.9% 

SVM – 92.9% 
CT – 90.8% 

 

 

Khosravi et al. 
[15] 

Decision trees algorithms 
Logistic Model Trees (LMT), Reduced 

Error Pruning Trees (REPT), Naïve 

Bayes Trees (NBT), and Alternating 

Decision Trees (ADT) 

201 present and past flood locations 
were identified 

11 flood factors - Ground slope, 

altitude, curvature, SPI, TWI, land 

use, rainfall, river density, distance 

from river, lithology, and NDVI. 

ADT – 97.6 % 
NBT – 97.4 % 

LMT – 97.1% 

REPT - 81.1% 

 

Khosravi et al. 
[16] 

Shannon’s entropy, statistical index, 
and weighting factor models 

211 flood locations were identified 
10 flood factors - Slope angle, plan 

curvature, altitude, TWI, SPI, 

distance from river, rainfall, geology, 
land use, and NDVI 

SI - 98.72 % 
WF - 98.1% 

SE - 92.53% 

Youssef et al. [17] bivariate and multivariate statistical 

models (frequency ratio and ensemble 

frequency ratio and logistic regression) 

127 flood locations were identified 

7 flood factors - Slope, elevation, 

curvature, geological units, landuse, 
soil drain, and distance from streams 

FR - 89.6 % 

FR+LR - 91.3%  

 

4. Conclusion 

In summary, the purpose of this paper was to review selected study on flash flood susceptibility 

modelling (FFSM). Based on the selected studies, the ability of integration between GIS and analytical 

model shows the good result in developing flash flood susceptibility model. The ensemble and hybrid 

model of machine learning can increase the accuracy of result. The methods of FFSM are also play 

important role. The studies carried out by using machine learning method shows that improvement of 

result when they applied the machine learning technique at same study area. It also found that the 

result of machine learning method has a higher accuracy than qualitative and quantitative method 

(WoE, FR, and AHP) even the number of flooded points was decrease compare with previous study. It 

is proved that the ability of integration between GIS and analytical model is able to generate the flash 

flood susceptibility modelling which are very useful tools to plan and manage the flood.   
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