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Abstract. Previous studies proved that in addition to spatial characteristics function in extracting 
roughness information, there is potential roughness dependability across changes in the temporal 
mechanisms of textured surfaces. In the present study, we created temporal coding mechanism 

by converting fine spatial structure surface into a temporal drifting pattern. We proposed that 
regular spatial structure of gratings with variation of temporal mechanism have different 
influence toward roughness perception. Results showed massive individual differences of 
roughness perception between subjects, suggesting that a combination of spatial and temporal 
mechanisms accounts for perceptual judgments of roughness. We suggest that visual roughness 
judgment was determined by spatial in grating stimulation, and improvement is needed in spatial 

components before temporal coding of visual roughness can be declared. 

1. Introduction 

Humans perceive they are real-world by visual examination and manual exploration of the objects 

around them [1]. Shape elements serve as significant cues for object perception, but material properties 

(such as surface texture, roughness, stickiness, and compliance) also provide additional information that 

can facilitate recognition [2] and other various cognitive functions including selective attention, 

learning[3], and cross-modal integration[4][5]. 

 In tactile texture perception, roughness is one of the most important characteristics of a textured 

surface and it is evident that, at least for fine surfaces, spatial characteristics play an important role in 

extracting roughness information from textured surfaces [6][7]. The tactile perception of surface 

roughness can be estimated by skin vibrations generated during a fingertip stroking of a surface instead 

of being maintained in a static position [8]. It has been found that the reference frame in which spatial 

information is represented is strongly dependent on stimulus modality in vision and audition [9][10][11] 

 Recently, movement of textures against the fingertip was added to the horizontal sliding movement 

such as to generate a periodic modulation of the fine mechanical vibrations generated by the texture 

fingertip interactions [12]. Haptic perception of roughness textures is evidently affected by changes by 
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spatial mechanism conditions [13][14] and , if visual perception of the roughness of textures were well-

calibrated to a haptic perception of the same textures [15], it is expected to assume roughness 

dependability across changes in the temporal mechanisms of visual textures. 

 Although the behavioral and neural correlates of multisensory shape perception have received 

detailed investigation, little is known whether the surface texture is represented similarly, especially in 

vision and touch [2][4]. Crossmodal interplay has been shown as a broad range of cognitive processes 

[16]. Congruent visual-tactile stimulation led to improved behavioral performance in a crossmodal 

detection task [4][5]. The effects that occur with traditional visual-only and tactile-only tasks [9][10] 

may suggest the significance of these modalities in surface recognition. 

 The analysis and examination of the characteristics of visual information are largely been discussed 

due to its contribution to traffic safety and virtual reality technology. In this study, we focused on 

behavioral visual perception to clarify the temporal element in roughness perception. By roughness 

discrimination tasks using computer-generated grating stimulation, our goal is to investigate whether 

temporal frequency factors affect subject’s judgment with controlled spatial conditions. We compare 

the result with normal speed judgment task to evaluate our novel grating stimulation. 

 

2. Subjects 

Ten right-handed, healthy volunteers (all males, mean age of 21.4±0.3 years old) participated in this 

experiment. All subjects had no remarkable injuries to the hands or fingers, normal visions, and given 

written informed consent for participation. The current study is focusing on healthy young participants 

below 24 years old with normal vision. Based on previous study [7], after eliminating outliers, the 

amount of useful information obtained from ten participants can be considered sufficient for the 

discussion. 

 

3. Stimuli 

The experimental stimulation was written in the numerical computing programming language 

MATLAB R2015b (The Mathworks, Inc.) with interfaces of Psychophysics Toolbox Version 3 (PTB- 

3). The parameters of the grating including pixels per cycle, spatial frequency, and visible size were 

calculated and one single static black and white grating image was generated. The actual sine grating 

and drift speed (in cycles per second) were then computed and the number of pixels to be shifted is 

specified to perform a movement perception of black and white gratings. 

 In this study, we set the temporal frequency by controlling seven types of drift speed as target stimuli; 

which are 0.1, 0.5, 2, 4, 6, 10, and 20 cycles/second. All the drift speed was tested by several pilot tests 

to measure the speed of drifting black and white gratings. Three of them (2, 4, 6 cycles/second) were 

used as standard stimuli for the subjects’ reference during each trial. All seven speeds were used as 

target stimuli, pairing with those three speeds of reference.  

 
 

 

 

Figure 1.: Trial sequence. Reaction time was calculated between the start of gratings presentation and 

subject response and no time limit was appointed. 

 

  

                              1 Trial 

H--------------------------------------------------------------------------------------- H 

 

Fixation period Stimulation period Fixation period Stimulation period 
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 The equivalent speed of reference stimuli and target stimuli were also involved. Subjects assessed 

the same pair of reference and target ten times, totaling of 210 trials per subject.4 minutes of dark 

adaptation. Inside the experiment room, subject will sit on a chair with their right hand placed on the 

computer numeric keyboard for task's response. The keyboard size was 15mm long and 8mm width; 

fitting subject’s finger. A chin rest was provided fixed to the table to prevent subject's fatigue during the 

experiment and secondly for limiting subject's eye distance to be approximately 2.5 meters from the 

computer display. The experimenter was always outside the room to control the computing 

programming and to be on guard for subjects from sleeping during adaptation or experiment. The 

experimenter's voice can always be heard from inside the room.  

 Figure 1 illustrates the trial sequence. In the fixation period, subjects were not given any directions, 

but they need to be ready with incoming stimulation. Subjects will feedback all their responses in the 

stimulation period by the computer numeric keyboard with only three buttons horizontally arranged. In 

the speed cognition task, subjects need to judge whether target stimulus on the right was “faster” than 

reference stimulus on the left side. During task description before the experiment starts, subjects were 

asked to press right button if stimulus on the right side was faster or left button for the opposite. In case 

subjects could not decide which stimulus was faster between those two, they were asked to press the 

third button which was placed in the middle. In the roughness cognition task, subjects needed to select 

stimulus which was “rougher” between two presented on the left and right at the screen. Similar to speed 

cognition task, subjects were asked to press left button if stimulus on the left side was rougher, right 

button if stimulus on the right side was rougher and middle button if they could not conclude any of 

them. 
 

4. Data processing and analysis 

Each participant’s response was analyzed to remove outliers and separate incorrect or double click 

responses. Response distributions for each of the tasks were calculated for each subject. All the analyses 

were performed using RStudio Desktop version 1.0.136 (RStudio, Inc.) and SPSS version 17.0 (SPSS, 

Tokyo, Japan) 

 
5. Results 

We were interested to explore the mechanism inside tactile, visual and the interaction between them in 

the perception of roughness using fine textures. By designing two unimodal tasks and four bimodal tasks 

accompanying both modalities, we expected to understand more about how humans perceive roughness 

in the behavioral level of tactile and visual. We collected the subject’s response and only examined the 

“rougher” target response by subjects. The third-choice response (if the subjects could not decide which 

stimulus was faster/ rougher) were divided and inserted equally into another two responses. Results were 

plotted as the distribution of “faster” or “rougher” response when subjects perceived the target stimuli 

and compared with the reference stimuli on the left. 

 Mean of 10 subjects for “faster” response in speed cognition task are shown in figure 2. Three vertical 

lines are the three-reference stimulus speed (2, 4, and 6 cycles/s). In speed cognition task, all subjects 

have the same trend. They accurately perceived the speed of target stimulus; “faster” responses increased 

when the drifted speed of target stimulus increased. This result was expected and showed that subjects 

did not have any difficulties to percept and recognize each of grating stimuli. The error bar represents 

the standard deviation. The chance level for “faster” response was 33.33% since there were three types 

of responses. Pro-portion during the same drift speed between reference and target showed that subjects 

were around the chance level in 4 and 6 cycle/deg, but less in 2 cycle/deg. The proportion of “faster” 

response of target stimulus 20 cycle/deg was almost 100% for each comparison to reference stimuli and 

proportion of “faster” response of target stimulus 0.1 cycle/deg was almost zero.  

 In the roughness cognition task, inconsistent results between ten subjects were earned. Numerous 

possibilities can be seen for roughness perception of grating stimuli. We divided the result into three 

types, according to their cognitive characteristics. Individual results were separated and “rougher” 

response in roughness cognition task is shown in Figure 3. The results of roughness cognition tasks can 
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be divided into three groups. In group (a), subject tends to feel rougher when the target stimulus was 

faster but dropped slightly after 10 cycles/s. Proportion during the same drift speed between reference 

and target showed that subjects were around the chance level in 4 and 6 cycle/deg, but less in 2 cycle/deg. 
 

 

 The proportion of “rougher” response of target stimulus 20 cycle/deg was slightly dropped for each 

comparison to reference stimuli and proportion of “rougher” response of target stimulus 0.1 cycle/degree 

was near to zero. In group (b), subjects primarily felt smoother when the target stimulus is faster. 

Proportion during the same drift speed between reference and target showed that subjects were high 

above the chance level in 4 and 6 cycle/deg. The proportion of “rougher” response of target stimulus 20 

cycle/degree was almost 10% for each comparison to reference stimuli and proportion of “faster” 

response of target stimulus 0.1 cycle/deg was almost 100%. The results were relative with group (a), 

logically proposing same tendency of fast speed of drift stimuli. However, no slight increase in the 

“rougher” proportion between 10 and 20 cycles/degree. In group (c), constant “rougher” proportion was 

detected as the drift speed of target stimulus increased. The proportion was around 40% to 60 % which 

was above the chance level. Accordingly, subjects can sense the “roughness” inside the grating 

stimulation but could not discriminate against the difference of roughness at different speeds. 

 

Figure 2. Results of 10 subjects for speed cognition task. All subjects 

have the same trend; they accurately perceive the speed of the target 

stimulus. 
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6. Discussion 

Our previous study suggested that in bimodal sensory tasks, both visual and tactile tasks roughness 

perception was influenced, although in different volumes. Visual sensory receive a big impact when 

cross-modality occurred from tactile information, more than tactile sensory received. This can be 

explained by behavioral evidence at [7] that indicated surface roughness is particularly salient to the 

tactile sense. On the contrary, we suggest that tactile sensory receiving little effects from visual 

information when two sensories are working. This may suggest that information encoded across vision 

and touch may not transfer efficiently across modalities, but tactile might do the “job” better than vision 

does.The fact that the subject's maximum roughness proportion was during target stimulus 10 

cycle/degree in group (a) was rather interesting, suggesting drift speed around 20 cycle/degree contribute 

to weaker roughness properties of visual textures compared to 10 cycle/degree. The ceiling of roughness 

perception might closely relate with drifting speed under certain conditions, but the characteristics 

transformed after certain degree of velocity or acceleration of temporal frequencies. Additional tests 

with more subjects are necessary to prove the hypothesis. 

 Interestingly, certain subjects were also not consistent for the duration of five attempts of roughness 

cognition tasks. As an example, a subject performed one session of the task once every week for five 

weeks. In the first attempt, subject’s proportion of “rougher” response increased when the drift speed of  

 

target stimulus increased. However, the range of minimum and maximum value of the proportion was 

decreased since the third attempt. From the fourth attempt, the increase pattern of the graph cannot be 

seen any longer. In another subject, during the second attempt of the experiment, subject conformed 

type (b) of the result in Figure 3. Three weeks later, the opposite result appeared. In the roughness  

cognition task, we carefully controlled the experimental spatial parameter and environment to be 

consistent in every task and every subject over the five attempts, thus it is unreasonable to conclude that 

the parameters influence the inconsistency among subjects. The fact that subject did not respond 

 

Figure 3. Results of roughness response. Roughness percentage of target stimulus was plotted for 

each reference stimulus speed. Generally, results can be divided into three types of roughness 

responses. In (a), subject tends to feel rougher when target stimulus was faster but dropped slightly 

after 10 cycles/s. In (b), subjects primarily felt smoother when target stimulus is faster. In (c), 

constant roughness was detected as the drift speed of target stimulus increased 
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consistently throughout five weeks may suggest that extremely uncluttered spatial mechanisms in our 

grating stimuli carried less consequence for roughness perception in visual tasks. We expect to extend 

these preliminary studies to control different spatial character to expose subjects for more temporal 

judgment in roughness discrimination. 
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