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Abstract The unsteady double diffusion of the boundary layer with the nanofluid
flow near a three-dimensional (3D) stagnation point body is studied under a microgravity
environment. The effects of g-jitter and thermal radiation exist under the microgravity
environment, where there is a gravitational field with fluctuations. The flow problem is
mathematically formulated into a system of equations derived from the physical laws and
principles under the no-slip boundary condition. With the semi-similar transformation
technique, the dimensional system of equations is reduced into a dimensionless system
of equations, where the dependent variables of the problem are lessened. A numerical
solution for the flow problem derived from the system of dimensionless partial differential
equations is obtained with the Keller box method, which is an implicit finite difference
approach. The effects studied are analyzed in terms of the physical quantities of principle
interest with the fluid behavior characteristics, the heat transfer properties, and the con-
centration distributions. The results show that the value of the curvature ratio parameter
represents the geometrical shape of the boundary body, where the stagnation point is lo-
cated. The increased modulation amplitude parameter produces a fluctuating behavior
on all physical quantities studied, where the fluctuating range becomes smaller when the
oscillation frequency increases. Moreover, the addition of Cu nanoparticles enhances the
thermal conductivity of the heat flux, and the thermal radiation could increase the heat
transfer properties.
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Nomenclature

a, principal curvature in the x-direction;
b, principal curvature in the y-direction;
C, concentration of the fluid;

Cfx, skin friction in the x-direction;
Cfy, skin friction in the y-direction;
Cw, wall concentration;
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cp, specific heat capacity at constant pressure;
C∞, nanofluid concentration;
c, curvature ratio;
D, mass diffusion;
f , dimensionless function;
Gr, thermal Grashof number;
Gm, mass Grashof number;
g, gravitational field acceleration;
g0, mean gravitational acceleration;
h, dimensionless function;
k, thermal conductivity;
k∗, mean absorption coefficient;
Nu, Nusselt number;

Nr, thermal radiation parameter;
Pr, Prandtl number;
qr, nonlinear radiative heat flux;
Sc, Schmidt number;
Sh, Sherwood number;
T , temperature;
T∞, nanofluid temperature;
Tw, wall temperature;
t, dimensional time;
t∗, dimensionless parameter of time;
u, velocity of the fluid in the x-direction;
v, velocity of the fluid in the y-direction;
w, velocity of the fluid in the z-direction.

Greek symbols

α, thermal diffusion;
β, thermal expansion;
βc, concentration expansion;
ε, the amplitude of modulation;
η, boundary layer thickness;
θ, dimensionless temperature parameter;
μ, dynamic viscosity;
υ, kinematic viscosity of fluid;

ρ, density;
σ∗, Stefan-Boltzman constant;
τ , dimensionless parameter of time;
φ, nanoparticles volume fraction;
Φ, dimensionless concentration parameter;
ω, frequency of oscillation;
Ω, dimensionless frequency of oscillation.

Scripts

*, dimensionless parameter;
′, differentiation with respect to η;
nf, nanofluid;

f, base fluid;
s, solid nanoparticle.

1 Introduction

The fluid movement affected by viscosity due to the bounding surface is an integral part of
fluid mechanics, known as the boundary layer flow[1]. Studies on boundary layer flow are not
only limited to the fluid movement but also include heat transfer properties and concentration
distribution, which occur at the thermal and concentration boundary layer[2]. Theoretical
studies on three-dimensional (3D) boundary layer flow with free convection were conducted
by Chamkha[3] and Juel et al.[4], in which the mathematical modeling was derived from the
Navier-Stokes equation. The external force added on the natural force in the flow, namely the
mixed convection flow, seems to have a significant effect in most applications since it is widely
applied more in manufacturing industries[5–6]. Fiveland[7] explored the heat transfer properties
either in the fluid or at the boundary layer body for the 3D boundary layer flow with free
convection. Lakshmisha et al.[8] extended the study that covered mass transfer together with
heat transfer by explaining the analysis describing the concentration distribution phenomena
occurred in the problems. The geometry of a boundary layer body plays a significant part, and
the study of the fluid behavior gained researchers’ interest to explore[9]. Since fluids are not
only classified as Newtonian, Awais et al.[10] examined the non-Newtonian fluids which do not
obey the Newtonian viscosity characteristics.

A robust physical principle proved the maximal local pressure positioned at stagnation
points. The Bernoulli principle gives a very significant reason in considering this effect on bound-
ary layer flow[11]. Hiemenz[12] first published the result of a two-dimensional (2D) stagnation-
point flow on a boundary layer by utilizing the Navier-Stokes equation in 1911. Later, a large
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number of theoretical studies were conducted either in 2D or 3D cases due to its importance
to engineering applications[13–14]. An axisymmetric flow condition was considered in most 3D
stagnation point flow problems[15]. The heat and mass transfer properties on stagnation-point
flow were analyzed based on the concentration distribution[16–17]. Interestingly, for stagnation-
point flow cases, the geometry of the boundary body provided very significant results on the flow
behavior[18]. For non-Newtonian fluids, e.g., Casson, second-grade, and third-grade fluids, more
parameters were considered in explaining their characteristics and heat transfer properties[19].
The flow characteristics of non-Newtonian fluids in a stagnation-point region with a magneto-
hydrodynamic, porous medium under thermal radiation were also conducted[20–22].

Thermal radiation is defined as the propagation of thermal electromagnetic particles through
a medium[23]. Rosseland[24] introduced a nonlinear thermal radiation model that could be
applied to boundary layer flow problems. Based on the model presented, Hayat et al.[25] studied
the thermal radiation effect on a 3D boundary layer flow problem. Makinde[26] investigated
the concentration distribution of the free convection flow with thermal radiation and the mass
transfer properties of electromagnetic particles past a moving porous plate. Pop et al.[27] studied
the stagnation-point boundary layer problem of flow under thermal radiation.

From the theoretical analysis on the combination of thermal radiation effects with nanofluids
for boundary layer problems, it was shown that the thermophysical properties increased by the
addition of nanoparticles and heat sources[28–29]. The thermal radiation effect together with the
nanofluid boundary layer flow at a 3D stagnation point region was studied[30]. The 3D nano-fluid
boundary layer flow including gyrotactic microorganisms within a stretching porous cylinder
body was numerically studied with the effects of magnetohydrodynamics (MHD), chemical
reaction, and thermal radiation[31].

Nanofluids have been used in many machinery cooling systems due to their excellent per-
formance in transferring heat as compared with classical fluids[32]. Nanofluids are formed by
adding stable microscopic particles with higher thermophysical properties into conventional
fluids[33]. Mansoury et al.[34] administered an experimental study for the water-based alu-
minium oxide nanofluid. Zaraki et al.[35] studied the effects of nanoparticle shape on the heat
transfer behaviors of a nanofluid. Rashad et al.[36] investigated the effects of magnetic field
and internal heat generation on a rectangular cavity shape body filled with a saturated porous
medium Cu-water nanofluid. For boundary layer problems, there are two popular nanofluid
models, i.e., the Buongiorno nanofluid model and the Tiwari and Das nanofluid model[37–38].
Nanofluids have been applied to either free or mixed 3D boundary layer flows to enhance the
thermal conductivity[39]. The behaviors of 2D[40–41] and 3D[18,42] stagnation-point flows under
a high static pressure environment were also conducted. Theoretical studies on boundary layer
flow under the microgravity environment could show specific flow characteristic behaviors.

Experimental studies were conducted on the assumption of zero gravitational fields at the
outer space. It was shown that a pleasant environment existed when a semiconductor was
produced without the doping effect and disappeared when small gravitational field disturbance
was detected[43]. The small fluctuating gravitational field, i.e., g-jitter, is caused by crew
movement and tremors from mechanical apparatuses in the spacecraft under the microgravity
environment[44]. The literature on the g-jitter effect induced on boundary layer flow is scarce.
Nevertheless, some researchers have been able to conduct theoretical studies to analyze the
effects of g-jitter on the flow manner[45–46]. For 2D and 3D stagnation-point flows, the g-jitter
effects were studied on the flow pattern and heat transmission, where fluctuating gravitational
fields existed[47–48]. Apart from that, the g-jitter effect together with the thermal radiation
induced by the boundary layer flow problem was successfully analyzed, and the results showed a
good correlation between the effects considered[49]. The applications of nanofluids on boundary
layer flows induced by the g-jitter effect were also conducted with different types of fluids and
geometries[50–51].

With motivation from the previous research, a fundamental study is conducted on the un-
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steady free convection nanofluid flow near a 3D stagnation point region induced by thermal
radiation and gravitational modulation. The mathematical model is analyzed in terms of the
skin friction coefficient, the Nusselt number, and the Sherwood number, which represent the
flow behavior, the heat transfer properties, and the concentration distribution, respectively.
The physical explanations for all effects considered in this study are discussed and explained
based on the fluid characteristics under certain conditions. The proposed problem has a high
potential for engineering applications such as a machinery cooling.

2 Mathematical model

Consider an unsteady incompressible laminar nanofluid flow near a 3D stagnation point
embedded in a viscous fluid consisting of Cu nanoparticles and water. At a constant wall tem-
perature and concentration, both the boundary layer flow under a microgravity environment
and the thermal radiation are affected by a fluctuating gravitational field. The 3D orthogonal
Cartesian coordinate system (x, y, z) is measured along the surface at the nodal point N (see
Fig. 1). Initially, the fluid is assumed to move with a constant velocity at the ambient uniform
temperature T∞ and the concentration distribution C∞. When the time t > 0, the temperature
and concentration of the fluid begin to rise to the wall temperature Tw and the body concen-
tration Cw. The stagnation point flow region can be presented as the nodal point N and the
saddle point S, which hold the properties of the curvature principle denoted by a and b and are
measured at the plane x = 0 and y = 0. The radiation effect is taken in the energy equation
whereby the radiative heat flux is assumed negligible in the x- and y-directions. The physical
flow of the nanofluid model near a stagnation point region induced by the g-jitter and thermal
radiation into the 3D Cartesian coordinate system is presented in Fig. 1.

Fig. 1 Physical model of the stagnation point region of the nanofluid flow induced by the g-jitter in
the 3D Cartesian coordinates system

Under a microgravity environment, the fluctuating gravitational field behavior, known as
the g-jitter effect, is measured as normal to the z-direction depending on t such that

g∗(t) = g0(1 + ε cos(πωt)), (1)

where g0 is the mean of the gravitational acceleration. Meanwhile, ε and Ω are the amplitudes of
the modulation and the frequency of oscillation, respectively. By inducing the Tiwari and Das
nanofluid model into the 3D Navier-Stokes equation, the governing equation of the incompress-
ible viscous fluid consisting of the continuity, momentum, energy, and concentration equations
under the boundary layer and Boussinesq assumptions can be written as follows[28,38,52]:

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0, (2)
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ρnf

(∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)

= μnf
∂2u

∂z2
+ g∗(t)(ρβ)nfax(T − T∞) + g∗(t)ρnfβcax(C − C∞), (3)

ρnf

(∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)

= μnf
∂2v

∂z2
+ g∗(t)(ρβ)nfby(T − T∞) + g∗(t)ρnfβcby(C − C∞), (4)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
= αnf

∂2T

∂z2
− 1

(ρcp)nf

∂qr

∂z
, (5)

∂C

∂t
+ u

∂C

∂x
+ v

∂C

∂y
+ w

∂C

∂z
= Dnf

∂2C

∂z2
(6)

subject to the following boundary and initial conditions:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

t < 0 : u = v = w = 0, T = T∞, C = C∞ for any x, y, and z,

t � 0 : u = v = w = 0, T = Tw, C = Cw on z = 0, x � 0, y � 0;

u = v = w = 0, T = T∞, C = C∞ as z → ∞, x � 0, y � 0.

(7)

In the above equations, u, v, and w are the velocity components in the x-, y-, and z-
directions, respectively. T and C are the temperature and the concentration, respectively. The
script nf corresponds to nanofluid. ρ, μ, β, βc, α, cp, and D are denoted as the density, the
dynamic viscosity, the thermal expansion, the concentration expansion, the thermal diffusivity,
the specific heat capacity at constant pressure, and the mass diffusion, respectively. The prin-
ciple curvature in the x- and y-directions, represented by a and b, shows the characteristics of
the boundary layer flow near a stagnation point region. Based on Rosseland’s approximation,
the effect of thermal radiation in 3D cases can be simplified into qr, in which the nonlinear
radiative heat flux is defined as follows[28]:

qr = −4σ∗

3k∗
∂T 4

∂z
, (8)

where σ∗ is the Stefan-Boltzman constant, and k∗ is the mean absorption coefficient. The
temperature variation is linearized by applying the Taylor series expansion on T 4 to the free
stream temperature T∞ by neglecting higher orders as follows:

T 4 ≈ 4T 3
∞T − 3T 4

∞. (9)

By substituting Eq. (9) into Eq. (8), Eq. (5) can be reduced into

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
= αnf

∂2T

∂z2
+

1
(ρcp)nf

16σ∗T 3
∞

3k∗
∂2T

∂z2
. (10)

Tiwari and Das’s nanofluid model focused on the analysis of the nanoparticle volume fraction
and the types of nanoparticles used in the problem. For the viscous Newtonian fluid, the
nanofluid constant is derived from Brinkman’s equation to define the thermophysical properties
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such that[53–54]⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ρnf = (1 − φ)ρf + φρs, μnf =
μf

(1 − φ)2.5 , αnf =
knf

(ρcp)nf

,

(ρβ)nf = (1 − φ)(ρβ)f + φ(ρβ)s, (ρcp)nf = (1 − φ)(ρcp)f + φ(ρcp)s,

knf

kf
=

(ks + 2kf) − 2φ(kf − ks)
(ks + 2kf) + φ(kf − ks)

, Dnf =
1 − φ

1 + φ/2
,

(11)

where φ and k are the nanoparticle volume fraction and the thermal conductivity, respectively.
The subscripts s and f are solid and fluid, respectively. Cu nanoparticles are added into the base
fluid (water) to enhance the thermal conductivity. The values of the thermophysical properties
are presented in Table 1[55].

Table 1 Thermophysical properties for Cu and water[55]

Thermophysical property Water Cu

Density ρ/(kg·m−3) 997.1 8 933

Specific heat capacity cp/(J·kg−1·K−1) 4 179 385

Thermal conductivity k/(W·m−1·K−1) 0.613 400

Thermal expansion coefficient β/K−1 2.1×10−4 1.67×10−5

Thermal diffusion coefficient α/(m2·s−1) 1.47×107 1.163 1×1010

As a way to reduce the complexity of the boundary layer problem, a semi-similar transfor-
mation technique is applied to the system of partial differential equations in Eqs. (2)–(5) and
Eq. (10). As a result, the equations become dimensionless, and the dependent variables are
reduced. The semi-similar variables used in this problem are[48]

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

τ = Ωt∗, η = Gr1/4az, t∗ = υa2Gr1/2t,

c =
b

a
, θ(τ, η) =

T − T∞
Tw − T∞

, Φ(τ, η) =
C − C∞
Cw − C∞

, Ω =
ω

υa2Gr1/2
,

u = υa2xGr1/2f ′(τ, η), v = υa2yGr1/2h′(τ, η), w = −υaGr1/4(f + h),

(12)

where η and Gr are the kinematic viscosity and the thermal Grashof number, respectively. The
dimensional system of Eqs. (2)–(5) and (10) undergoes a semi-similar transformation technique
by implementing the nanofluid constant in Eq. (11) and the semi-similar variables in Eq. (12).
The present study focuses on the nodal point of attachment. It holds the properties such that
|a| � |b| and a � 0. The parameter c is introduced here as the curvature ratio, c = b/a, and
0 � c � 1 at N . From the literature, the nodal point of attachment holds a characteristic
of a general practical body shape such as cylinder and sphere. As a result, the system of the
dimensionless equation becomes

C1f
′′′ + C2(f + h)f ′′ − C2f

′2 + C3(1 + ε cos(πτ ))θ +
Gm

Gr
C2(1 + ε cos(πτ ))Φ

= C2Ω
∂f ′

∂τ
, (13)

C1h
′′′ + C2(f + h)h′′ − C2h

′2 + cC3(1 + ε cos(πτ ))θ +
Gm

Gr
cC2(1 + ε cos(πτ ))Φ

= C2Ω
∂h′

∂τ
, (14)
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1
Pr

(C4 + Nr

C5

)
θ′′ + (f + h)θ′ = Ω

∂θ

∂τ
, (15)

1
Sc

C6Φ′′ + (f + h)Φ′ = Ω
∂Φ
∂τ

(16)

subject to {
f(η, 0) = f ′(η, 0) = 0, h(η, 0) = h′(η, 0) = 0, θ(η, 0) = Φ(η, 0) = 1,

f ′ → 0, h′ → 0, θ → 0, Φ → 0 as η → ∞,
(17)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C1 =
1

(1 − φ)2.5 , C2 = 1 − φ +
φρs

ρf
, C3 = 1 − φ +

φ(ρβ)s
(ρβ)f

,

C4 =
(ks + 2kf) − 2φ(kf − ks)
(ks + 2kf) + φ(kf − ks)

, C5 = 1 − φ +
φ(ρcp)s
(ρcp)f

, C6 =
1 − φ

1 + φ/2
,

P r =
υf

αf
, Nr =

16σ∗T 3
∞

3kfk∗ , Sc =
υf

Df
,

Gr =
g0β(Tw − T∞)

a3υ2
, Gm =

g0βc(Cw − C∞)
a3υ2

.

(18)

In the above equations, both the Prandtl number Pr and the Schmidt number Sc are
dimensionless. Nr and Gm are the thermal radiation parameter and the mass Grashof number,
respectively. The analysis of the problem focuses on the physical quantities of principle interest,
which are the skin friction, the Nusselt number, and the Sherwood number. For the skin
friction, the flow behavior is analyzed at the x- and y-directions, while the Nusselt number
and the Sherwood number focus on the thermal and concentration boundaries, respectively.
All dimensional physical quantities of principle interest defined for the nanofluid are written as
follows:⎧⎪⎪⎨

⎪⎪⎩
Cfx = μnf

(∂u

∂z

)
z=0

/
(ρfυ

2a3x), Nu = −a−1knf

(∂T

∂z

)
z=0

/
(kf(Tw − T∞)),

Cfy = μnf

(∂v

∂z

)
z=0

/
(ρfυ

2a3y), Sh = −a−1Dnf

(∂C

∂z

)
z=0

/
(Df(Cw − C∞)).

(19)

By using the same semi-similar variables in Eq. (11) and the nanofluid constant in Eq. (10),
the dimensionless physical quantities of principle interest after similarity transformation are

⎧⎪⎨
⎪⎩

Cfx/Gr3/4 = f ′′(τ, 0)/(1 − φ)2.5
, Cfy/Gr3/4 = h′′(τ, 0)/(1 − φ)2.5

,

Nu/Gr1/4 = −(knf/kf)θ′(τ, 0) − θ′(τ, 0)Nr, Sh/Gr1/4 = −
( 1 − φ

1 + φ/2

)
Φ′(τ, 0).

(20)

3 Solution procedure

In the previous section, the mathematical modeling of the proposed problem has successfully
been reduced into a dimensionless system of equations (see Eqs. (12)–(14)) subjected to the
boundary condition in Eq. (15). An implicit finite different procedure is conducted on the
system of equations, i.e., the Keller box method. The procedure consists of several steps as
follows: (i) to reduce the system of equations into the first-order system, (ii) to discretize the
first-order system by using the central difference, (iii) to linearize the obtained results by using
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the Newton method, and (iv) to solve the coefficient matrix by using the block tridiagonal
matrix[56]. In the mathematical modeling, the uniform grid with Δη = 0.04 and Δτ = 0.1 are
used, and the convergence criteria are less than 10−10. The procedure is conducted through
the Fortran language platform of Force 2.0 by using a personal computer. The specification of
the personal computer is CPU with Intel R© coreTM i5-2430M CPU @ 2.40GHz processor and
4.00 GB RAM. The excursion time for the problem to be converged is less than 20 s.

The results of the modulation amplitude, the oscillation frequency size, the nanoparticle
volume fraction, the curvature ratio, and the thermal radiation effect are illustrated graphically
and critically discussed, respectively. Comparative studies with the published results are also
conducted. As shown in Table 2, the results of the present study show satisfactory consistency
and accuracy with the results reported in the literature. Figure 2 shows the residual error
curves obtained in Ref. [56] and the present study. It can be seen that the published data fit
accordingly with the current research.

Table 2 Results of the skin friction coefficient in both directions, the rate of heat flux, and the
concentration flux transfer with different values of ε at a small size of Ω, where φ = 0, and
Nr = 0

ε
Ref. [56] Present result

f ′′ h′′ θ′ Φ′ f ′′ h′′ θ′ Φ′

0.0 0.799 1 0.426 6 0.428 7 − 0.798 9 0.426 4 0.428 7 0.173 7

0.2 0.797 6 0.426 0 0.428 0 − 0.798 0 0.426 0 0.428 0 0.173 6

0.4 0.794 0 0.424 0 0.425 8 − 0.794 6 0.424 3 0.425 8 0.173 3

0.6 0.787 5 0.420 7 0.421 9 − 0.788 5 0.421 2 0.421 9 0.171 8

0.8 0.778 0 0.416 1 0.416 0 − 0.779 4 0.416 7 0.416 0 0.171 8

1.0 0.765 2 0.410 0 0.407 1 − 0.766 9 0.410 8 0.407 1 0.170 5

-

-

Fig. 2 Residual curve error results of the present study and Ref. [56]
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3.1 Results and discussion
The flow characteristics, the thermal energy transfer properties, and the mass transfer dis-

tribution of this nanofluid flow problem are investigated. The parameter values applied in this
research are considered based on the published results and real engineering problems. The
effects of the stagnation-point region are analyzed based on the curvature ratio c within the
range of 0 < c < 1. For the modulation amplitude, the values of ε vary from 0 (a steady state)
to 1 due to the g-jitter pattern that causes an alternate motion of the gravitational field after
g > 1. For the oscillation frequency, a single harmonic component Ω is considered. The results
are shown in Figs. 3–8, in which there are four subfigures, one for the skin friction coefficient
on the x-direction Cfx/Gr3/4, one for the skin friction coefficient on the y-direction Cfy/Gr3/4,
one for the Nusselt number Nu/Gr1/4, and one for the Sherwood number Sh/Gr1/4.

The behaviors of the boundary layer flow near a stagnation point region are presented in
Figs. 3–5.

In Fig. 3, c = 0, Ω = 0.2, φ = 0.05, and Nr = 1. From the figure, it is clear that fluctua-
tion behaviors exist for all physical quantities of principle interest except for the skin friction
coefficient on the y-direction (see Fig. 3(b)). When c = 0, the skin friction coefficient on the
y-direction does not have a significant change as the time and the modulation amplitude in-
crease. By selecting c = 0, it provides a piece of vital and important information about the
geometry at the boundary layer, which is cylindrical. Special types of stagnation point flows
occur here as there is no change in terms of the magnitude of the skin friction coefficient. The
boundary layer flow produced is known as the plane stagnation-point flow case, since there is no
skin friction value change as the parameter τ increases. It can be concluded that a cylindrical
geometry surface of c = 0 produces the plane stagnation-point flow case.

In Fig. 4, c = 0.5, Ω = 0.2, φ = 0.05, and Nr = 1. The same fluctuation behaviors are

Fig. 3 Physical quantities for c = 0, Ω = 0.2, φ = 0.05, Nr = 1, and different ε
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Fig. 4 Physical quantities for c = 0.5, Ω = 0.2, φ = 0.05, Nr = 1, and different ε

Fig. 5 Physical quantities for c = 1.0, Ω = 0.2, φ = 0.05, Nr = 1, and different ε
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noticed in all physical quantities of principle interest, including the skin friction coefficient in
the y-direction which does not change as c = 0 in Fig. 3(b). This is because a periodic reversible
gravitational field is generated due to the g-jitter effect as ε increases. From Fig. 4, it can be seen
that there are the highest and the lowest values in a specified period for all physical quantities
of principle interest, and the constant physical quantities only exist at the steady state where
ε = 0. Therefore, a small conclusion could be made, i.e., the stagnation point parameter plays
a very significant role in the flow behavior.

In Fig. 5, c = 1, Ω = 0.2, φ = 0.05, and Nr = 1. As shown in the figure, Cfx/Gr3/4,
Cfy/Gr3/4, Nu/Gr1/4, and Sh/Gr1/4 show the same behaviors as ε increases, but have different
magnitude values. Interestingly, the magnitude values for Cfx/Gr3/4 and Cfy/Gr3/4 are the
same, which indicates that a particular type of stagnation point flow occurs, which is known
as the asymmetry stagnation-point flow case. As the spherical shape of the boundary layer is
applied as the boundary body when c = 1, the asymmetry stagnation-point flow case is caused
by the spherical boundary layer shape.

The effects of the oscillation parameter Ω are analyzed and presented graphically in Fig. 6,
in which c = 0.5, φ = 0.05, and Nr = 1. For each physical quantity of principle interest,
different values of Ω provide different results. It can be seen that the effects of Ω on Nu/Gr1/4

and Sh/Gr1/4 are more significantly than those on Cfx/Gr3/4 and Cfy/Gr3/4. As shown in
the figure, larger Ω corresponds to larger maximal value for each studied quantity of principle
interest for the same value of ε. Lower peak values indicate that the convergence rate of the
problem will be more rapid when the frequency of oscillation is larger.

The effects of the nanoparticle volume fraction φ on the flow are illustrated in Fig. 7, where
ε = 0.5, Ω = 0.2, Nr = 1, and c = 0.5. It is seen that the values of the skin friction coefficient
in both the x- and y-directions increase with in the increase in φ. This is due to the additional

Fig. 6 Physical quantities for different ε and Ω, where c = 0.5, φ = 0.05, and Nr = 1
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Fig. 7 Physical quantities for different φ, where c = 0.5, Ω = 0.2, ε = 0.5, and Nr = 1

Fig. 8 Physical quantities for different Nr, where c = 0.5, Ω = 0.2, φ = 0.05, and ε = 0.5
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resistance caused by the nanosize Cu particles in the conventional fluid. The frictional force
will then be converted into heat energy, which also enhances the thermal conductivity of the
fluid. Besides, the heat transfer properties represented by the Nusselt number show a positive
response in terms of the heat conductivity with the addition of Cu nanoparticles in the fluid.
Higher thermal conductivity held by Cu nanoparticles causes a fluid enhancement in the heat
transfer properties. The results of the Sherwood number are found to decrease as φ increases
due to the new nanoparticles which enhance the concentration distribution and diffusion in the
fluid.

The effects of thermal radiation on the fluid flow characteristics, the thermal energy prop-
erties, and the mass dispersion are analyzed in terms of Cfx/Gr3/4, Cfy/Gr3/4, Nu/Gr1/4, and
Sh/Gr1/4 are illustrated in Fig. 8. All the analyzed physical quantities show an increased mag-
nitude as the thermal radiation parameter Nr increases. The thermal radiation effect carries
the properties of a heat transferring mode occurring in real engineering applications where a
more comprehensive system produced is successfully proven in Fig. 8(c). With the consideration
of the thermal radiation effect, there is an additional heat created at the main flow domain, par-
ticularly at the surface of the heat flux. Thus, Nu/Gr1/4 increases as Nr increases. Nu/Gr1/4

defines the heat flux on the wall characteristics. With the consideration of the Nr mode of heat
transfer, the value of the Nusselt number in the flow increases.

4 Conclusions

The unsteady viscous Newtonian nanofluid with the effects of thermal radiation is success-
fully studied numerically near a 3D stagnation point body in a fluctuation gravitational field.
The Keller box method is implied to solve the mathematical modeling of the proposed problem.
The physical quantities of principle interest are implied as indicators in the analysis part. The
following highlighted results are obtained.

(i) Different boundary-layer geometry produces different particular types of stagnation-point
flow.

(ii) The larger the oscillation frequency, the faster the convergence rate.
(iii) An additional resistance is generated at the boundary surface when the Cu nanoparticles

are added into the fluid flow system.
(iv) The fluid thermal conductivity increases when nanoparticles are added.
(v) The usage of nanofluid in the flow system does not enhance the concentration properties

at the boundary layer.
(vi) The presence of the thermal radiation effect enhances the heat flux transfer properties

at the boundary surface.
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format, as long as you give appropriate credit to the original author(s) and the source, provide a link
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visit http://creativecommons.org/licenses/by/4.0/.
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