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Abstract 
 
In recent decades, micropolar fluid has been one of the major interesting research subjects due to the 

numerous applications such as blood, paint, body fluid, polymers, colloidal fluid and suspension fluid. 
However, the behavior of micropolar fluid flow over a permeable stretching surface of another 
quiescent fluid with a heavier density of micropolar fluid under the condition of mixed convection is 

still unknown. Thus, the current work aims to investigate numerically the mixed convection of 
micropolar fluid flow over a permeable stretching surface of another quiescent fluid. In this research, 
the similarity transformation is implemented to reduce the boundary layer governing equations from 

partial differential equations to a system of nonlinear ordinary differential equations. Then, this model 
is solved numerically using shooting technique with Runge-Kutta-Gill method and applied in Jupyter 
Notebook using Python 3 language. The behavior of micropolar fluid in terms of velocity, skin friction, 

microrotation and temperature are analyzed. 
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INTRODUCTION 
 

Micropolar fluid is one of the non-Newtonian fluid that is often 
being the subject of research due its ability insolving the fluid 

containing suspended particle such as animal blood, body fluid, 
colloidal fluid, magnetic fluids, cloud with dust, muddy fluids and 
polymer that cannot be explained by Navier-Stokes equation. Eringen 
(1965) was the first researcher who proposed the theory of micropolar 
fluid. Since then, many researchers have expanded  his work to other 
different geometries such as stretching or shrinking surface and 
permeable surface. Currently, micropolar fluid is being used to model 
the blood flow through the tapered artery (Haghighi & Asl, 2015) and 

chyme transport in the human intestinal system (Kiran et al. , 2017).  
The topic of heat transfer in boundary layer flow is one of the 

growing research disciplines as it is widely used especially in industry 
such as transpiration cooling, drag reduction, thermal recovery of oil, 
the design of thrust bearings and radial diffusers, material drying and  
laser pulse heating (Attia, 2008). Mixed convection is one of the heat 
transfer mechanism that happens when the impact of buoyancy force 
in forced convection or the impact of forced flow in free convection is 

present. Earlier, Takhar et al. (1998) studied  micropolar fluid flow 
over a stretching sheet under the effect of mixed convection. They 
found that higher suction slow down the velocity and decrease the 
boundary layer thickness. Ishak et al. (2007) carried out numerical 
study of mixed convection of the stagnation point flow towards a 
stretching vertical permeable sheet. They reported that heat transfer 

from the surface increased with the presence of suction. Next, Ishak et 
al. (2008) investigated mixed convection of micropolar fluid towards 
a stretching sheet  on a stagnation point. From this study, the result 
showed that with the increment of Prandtl number Pr, the thermal 

boundary layer thickness decreased.  
Nevertheless, the system involving two fluids also exists. Wang 

(1988) proposed the mathematical model of stagnation flow on the 
surface of a quiescent fluid. Then, Reza & Gupta (2012) discover the 
relationship of magnetic effect on the electrically conducting fluid in 
the surface of another quiescent fluid. Years later, Reza et al. (2017) 
performed an analysis of stagnation point flow and heat transfer for 
viscoelastic fluid impinging on a quiescent fluid. The stagnation-point 

flow of a fluid on a shrinking surface of another quiescent fluid was 
attempted by Rohni et al. (2015). In other study, Isa & Mohammad 
(2017) researched the boundary layer flow on a stretching sheet of 
another quiescent fluid. They discovered that increasing suction 
parameter increased the velocity of upper fluid while decreased the 
velocity of lower fluid. Very recently,  Majid et al., (2019)  studied 
the effect of constant heat flux on forced convective micropolar fluid 
flow over a surface of another quiescent fluid. They mentioned that 

with the increment of Pr number, the temperatures of both upper and 
lower fluid decrease. From the previous works mentioned, the mixed 
convection of micropolar fluid flow on another quiescent fluid is not 
investigated yet. Thus, this research paper intended to solve this 
problem. 
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MATHEMATICAL MODEL 
 

Consider an incompressible micropolar fluid of density  , 

dynamic viscosity , vortex viscosity , spin-gradient viscosity , 

acceleration due to gravity and microinertia density  impinging 

orthogonally on a permeable stretching or shrinking surface of another 

quiescent, heavier incompressible micropolar fluid of density , 

dynamic viscosity , vortex viscosity , spin-gradient viscosity 

, acceleration due to gravity and microinertia density . 

Meanwhile, , and  are temperature of surface and free 

stream temperature respectively. A sketch of the physical problem is 

shown in Fig 1. Let  denote the Cartesian coordinates for the 

upper fluid with  as the symmetry plane and - axis is taken 

along the interface between the two fluids. It is assumed that the 

surface is stretched or shrunk with the velocity  , where 

 for a stretching sheet and  for a shrinking sheet, 

respectively. It is also assumed that the constant mass velocity is , 

where  for suction and  for injection or withdraw of the 

fluid, respectively. The coordinate system for the lower fluid is 

 as shown in Fig. 1. Note that the -axis is normal to the 

 plane.  

 
Fig. 1 Physical  coordinate. 

Under the boundary layer approximation, the governing equations are 

    (1) 

   (2) 

   (3) 

   (4) 

subject to boundary conditions 

   (5) 

   (6) 

where  is for upper fluid and  is for lower fluid. From Jena 

& Mathur (1981), the strong concentration case  represents the 

concentrated particle flows in which the microelements close to the 

wall surface are unable to rotate. According to Ahmadi (1976), the 

weak concentration case  indicates the vanishing of the 

anti-symmetrical part of the stress tensors. The case , as 

suggested by Peddieson (1972), is used for the modelling of turbulent 

boundary layer flow. In this paper, we consider the cases of  

(strong concentration) only. Also, we assume that spin-gradient 

viscosity  is defined as (Nath, 1975; Rees & Pop, 1998; Nazar et 

al., 2004 & Aurangzaib et al., 2016) 

   (7) 

Following Attia (2008) for upper fluid, the similarity variables are  

                 (8) 

and for lower fluid  

   (9) 

where the prime denotes differentiation with respect to and  

respectively. Clearly, with  and  given in  (8), the equation of 

continuity (1) is satisfied. Similarly, for the lower fluid, with  and 

 given as in (9), it is readily seen that the continuity equation (1) is 

identically satisfied. Using equations (8) - (9), equations (2) - (6) are 

transformed into ordinary differential equations for the upper fluid 

flow  

   (10) 

   (11) 

   (12) 

with the boundary conditions 

  (13) 

Next, for the lower fluid, we obtain 

   (14) 

   (15) 

   (16) 

with the boundary conditions 
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  (17) 

where is Richardson number,  is Prandtl number,  and  

are micropolar parameters. These quantities can be expressed as  

   (18) 

 In addition, we use  to indicate mixed convection case.  

 
RESULTS AND DISCUSSION 
 
Equations (10) to (12) with boundary conditions (13) for upper fluid 
and equations (14) to (16) with boundary conditions  (17)  for lower 
fluid are solved using shooting technique with Runge-Kutta-Gill 
method. The numerical computation is implemented using Python 3 
language in Jupyter Notebook. The graphical representation of 

velocity, microrotation and temperature are plotted for strong 

concentration ( ) and assisting flow only.  According to Yacob & 

Ishak (2012), solution for Newtonian fluid ( ) exists when 

permeable parameter  is greater or equal to 2 and as for 

micropolar fluid ( ) stronger suction is needed.  Therefore, we 

choose the permeable parameter . In order to verify the 

present work, we compared the values of skin friction  when 

stretching parameter  is varies with Rosali et al. (2012) in Table 1 

and obtained a good agreement.  
 

Table 1 Comparison of skin friction with a various stretching parameter 

when   

 Rosali et al. (2012) Present 

0 1.232588 1.232588 

0.1 1.146561 1.146561 

0.2 1.051130 1.051130 

0.3 0.946816 0.946816 

0.4 0.834072 0.834074 

0.5 0.713295 0.713295 

1.0 0 0 

2.0 -1.887307 -1.887307 

3.0 -4.276541 -4.276541 

4.0 -7.086378 -7.086377 

5.0 -10.264749 -10.264747 

 
Figs. 2 – 4 represent velocity, microrotation and temperature when 

micropolar parameter varies Pr number , stretching parameter 

and permeable parameter of upper and lower fluid . 

Fig. 2 shows that the velocity of upper fluid is decreasing while the 
velocity of lower fluid is increasing as the micropolar parameter 
increases.  Fig. 3 illustrates a similar trend for microrotation. Also, the 

temperature of the upper fluid is slightly increasing with the addition 
of micropolar parameter. However, the temperature of lower fluid is 
decreasing. 

 

 
Fig. 2 Velocity profile of upper and lower fluid with a variation 

of micropolar parameter  when and . 

 

 
Fig. 3 Microrotation profile of upper and lower fluid with a variation  

 of micropolar parameter  when and . 

 

 
Fig. 4 Temperature profile of upper and lower fluid with a various 

micropolar parameter  when and . 

Figs. 5 – 7 are presented to observe the effect of Pr number on 
velocity, microrotation and temperature when micropolar fluid 

and stretching parameter . In real life,  

represents air,  indicates an electrolyte solution while  is 

for water (Salleh et al., 2009). It is shown from Fig. 5 that the velocity 
of upper fluid is decreasing as Pr number increase. On the other hand, 
the velocity of lower fluid is increasing and has greater boundary 
layer thickness. Microrotation is following the same trend as seen in 

Fig. 6. Meanwhile, the temperatures of both upper and lower fluid are 
is decreasing with the increment of Pr number. Physically, greater Pr 
number means the fluid has high viscosity which produces less heat 
while low Pr number indicates that the fluid is highly conductive.  
 

( ) ( ) ( ) ( )

( ) ( ) ( )

2

2

, ' ( ) 1 as , '' , 0

0 

,

 as ' , 0, 0,

G nF

F

F

G

F x b x l x x q x x

x x q x x

= = =

®

= - ®

® ® ®¥

Ri Pr
1
K

2
K

Pr  and K , 1,2.
p i i

i

i i

i
c µ k

k µ
= ==

Ri 1=

0n =

0K =

,a b

0K >

3a b= =

''(0)f

l

0,Pr 1, 0 and Ri 0K a b= == ==

l

Pr 7=

0.5l = 3a b= =

K 0r 5P 7, .l ==  3a b= =

K 0r 5P 7, .l ==  3a b= =

K 0r 5P 7, .l ==  3a b= =

1 2
1K K K= = = 0.5l = Pr 0.71=

Pr 1= Pr 7=



 

 Majid et al. / Malaysian Journal of Fundamental and Applied Sciences Vol. 16, No. 4 (2020) 487-492  

 

490 

 
Fig. 5 Velocity profile of upper and lower fluid with a variation  

      of Pr number when and . 

 

 
     Fig. 6 Microrotation profile of upper and lower fluid with a variation  

     of Pr number when and . 

 

      
Fig. 7  Temperature profile of upper and lower fluid with a variation of 

Pr number when and . 

Figs. 8 – 13 display the effect of stretching parameter on velocity, 

microrotation and temperature when micropolar , Pr 

number  , permeable parameter of upper and lower fluid 

.  From Fig. 8 and Fig. 9, it can be observed that the 

velocity of upper and lower fluid is increasing as stretching parameter 

increases. It is seen that at stretching parameter , the velocity of 

upper fluid is constant at 1 as the velocity of stretching surface and 
velocity of fluid is equal while the velocity of the lower fluid is 
constantly decreasing toward the boundary. Moreover, the magnitude 

of microrotation of upper and lower fluid is also increasing with the 

addition of the stretching parameter as can be seen in Fig. 10 and Fig. 
11. The temperature decreases as the stretching parameter increase for 
both upper and lower fluid. However, it is clear that upper fluid has 
smaller thermal boundary layer thickness compared to lower fluid.  
 

 
Fig. 8 Velocity profile for upper fluid when stretching parameter is 

various with , and . 

 

 

Fig. 9 Velocity profile of lower fluid when stretching parameter  

when is various with , and  

 

 
Fig. 10 Microrotation profile for upper fluid when stretching  

parameter is various with , and . 
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Fig. 11 Microrotation profile for lower fluid when stretching  

parameter is various with , and  

 

 

Fig. 12 Temperature profile for upper fluid when stretching  

parameter is various with , and . 

 
 

 
Fig. 13 Temperature profile for lower fluid when stretching parameter 

is varied with , and  

      Velocity, microrotation and temperature are sketched in Figs 14 – 
16 with permeable parameter of lower fluid greater than upper fluid 

, when micropolar parameter  Pr number 

and stretching parameter . From Fig. 14, the velocity 

of upper fluid is slightly increased while the velocity of lower fluid is 
decreasing with greater boundary layer thickness compared to upper 
fluid. Next, Fig. 15 exhibits that the microrotation of upper fluid is 
increasing until it achieves the minimum magnitude then decreasing 
along with the increment of permeable parameter.  Meanwhile, the 
microrotation of lower fluid is only decreasing after it reaches the 
peak. Fig 16 presents that the temperature of upper fluid is greater 

than the temperature of lower fluid. We also noticed that the higher 

value of permeable parameter, the smaller magnitude of temperature.  

 

 

 

Fig. 14 Velocity profile of upper and lower fluid when permeable 

parameter is various where with ,  and 

. 

 
Fig. 15 Microrotation profile of upper and lower fluid when permeable 

parameter is various where with ,  and 

. 

 
Fig. 16 Temperature profile of upper and lower fluid when permeable 

parameter is varied where  with ,  and 

. 
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CONCLUSION 
 

In conclusion, the problem of mixed convection of micropolar fluid 
flow over a permeable stretching surface on another quiescent fluid is 
solved. The result shows the velocity of upper fluid is decreasing as 

micropolar parameter  increases. Meanwhile, the velocity of lower 

fluid is decreasing with increment of micropolar parameter . We 
also observed that the temperatures of upper and lower fluid are 
decreasing as Pr number increases. In addition, we found that the 
temperature is declining with the addition of permeable parameter 

 for both upper and lower fluid. 
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