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Abstract. Artificial intelligence is one of the important fields in modern technologies to help us 

strive for better life. Healthcare industries nowadays spend a lot of money researching on how 

artificial intelligence can help improve their services and give the highest satisfaction to their 

customers.  Most healthcare organisations have a passive relationship to their patients when it 

comes to communication and this situation is often worsened because of a lack of inter-

operability between client and provider. Mobile applications on the other hand have become one 

of the effective strategies in bridging the interaction between provider and end user. In this study, 

an automated self-learning system is designed to provide conversational healthcare for 

personalised proactive experience. This system is developed along with the in cooperation of 

contactless monitoring device using a vision-based real-time monitoring of vital signs which 

allow patients to monitor their oxygen level, heart rate and respiration rate. This system is also 

automatically calibrated across patients, allowing precise measurement using highest probability 

method and natural language processing. Results obtained from the comparative analysis show 

a promising result with an error of 1.16 for pulse sensor and 2.917 for ECG which are below the 

threshold error. This allows user to accurately measure vital signs in a non-obtrusive way, and 

to provide them with the data required to determine to the right timing for any intervention 

procedure needed. The developed system would also help to bridge the gap of interoperability 

between client and medical provider 

1. Introduction 

One of the requirements for general artificial intelligence (AI) is to interact with the machine through 

natural language. This AI field includes dialog systems, chatbots or spoken dialog systems. The chatbot 

is also drawing upon ever-growing medical question range, to broaden its already significant wealth of 

medical expertise. Many seemingly static scenes contain subtle changes that are invisible to the naked 

human eye. However, it is possible to pull out these small changes from videos through the use of 

algorithms via motion magnification [1]. Motion magnification gives a way to visualize these small 

changes by amplifying them and to pull out interesting signals from these videos, such as the human 

pulse [2]. Motion magnification techniques can be divided into two categories which are Lagrangian 

and Eulerian approaches [5,4,3]. Lagrangian approach explicitly extracts the motion field (or optical 

flow) and uses it to move the pixels [10]. Lagrangian perspective is to analyse the angle of motion of 

the pixels (particles) of interest in the tracking image [6]. However, the Lagrange perspective approach 

has the following shortcomings where it is necessary to accurately track and estimate the trajectory of 
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particles, which requires more computational resources. Unlike the Lagrangian perspective, the Euler 

perspective does not explicitly track and estimate the motion of the particle, but instead fixes the 

perspective in one place, such as the entire image. In 2012, Wu et al. started from this perspective and 

proposed a method called Eulerian Video Magnification [7]. Eulerian techniques are useful for revealing 

subtle motions, but they are hand-designed, and do not take into account many issues such as occlusion. 

Wadhwa et al. improved the technology in 2013 and proposed a phase-based image motion processing 

technique [8]. In this study, the eulerian technique is used to extract the heart rate of the target person, 

where occlusion does not affect the end result much. Current systems utilize various sensors which 

require constant and secure physical contact with the patients during monitoring process and have a 

passive relationship to their clients when it comes to communication. This often worsens the problem 

because of a lack of inter-operability between client and provider [9]. The use of personal health 

assistants on our phone has suddenly become definite responses for certain needs, allowing precise 

measurement without the need for individual adjustments and contactless vital sign acquisition.  

However, for patient with specific conditions, a less intrusive monitoring method is critically required 

to avoid any unnecessary distress to the patient [10]. This study is focus on chatbot operation and 

process, where the text presented to them by the user (a process known as “parsing”), inferring what 

user mean and/or want, and determine a series of appropriate responses based on that patient information 

and vital sign prior to responding to a series of algorithms that interpret and identify the common disease 

such as common cold (viral rhinopharyngitis), tension-type headache (TTH) and migraine with 

exception of cancer related disease. 

 

2. Methodology 

 

2.1 Database and Automated Diagnosis 

The system encompasses of state of art chatbot interface along with vision based vital sign solutions that 

offers user to accurately measure vital signs in a non-obtrusive way, and to provide them with the data 

required to determine the need for any intervention procedure [11]. The method of database recall for 

disease identification, as shown in Figure 1 which was similar in ideas and formulaa to those of the 

"maximum likelihood method" and (head, ear, eye, nose and throat) HEETN exam, were applied to the 

automated diagnosis. The likelihood was weighted with a prior probability of each disease. Clinical data 

include quantities that are continuous, discrete, and bivariate [12]. Each of the data is therefore 

considered to be bivariate in terms of quantity either a symptom occurred or not. The format item that 

is specified here and used directly for automated diagnosis is designed to select from the three: YES, 

NO, and UNKNOWN. In this way the answer can be chosen. 

  

Figure 1. Flowchart of Automated Diagnosis. 
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2.2 Motion Magnification  

Heart rate is measured from subtle change in colour and movement under skin epidermis, due to 

variation in volume and oxygen saturation of the blood in vessel at every heartbeat. Each cardiac cycle 

appears in peak within small range e.g. 50 and 90 bpm.  

  

2.3 Proposed Algorithm Pipeline 

The automated diagnosis system is integrated with a chatbot and motion magnification for vital sign 

sensing. The architecture, as shown in Figure 2, consists of user interface and server with different sets 

of parameters. The left one (machine learning) is called the encoder, while the below one (corresponding 

logic and rule parser tokens) is called the decoder. The encoder machine learning conceives a sequence 

of context tokens one at a time and updates its hidden state. After processing the whole context sequence, 

it produces a final hidden state, which incorporates the sense of context and is used for generating the 

answer. For this purpose, a SoftMax layer over vocabulary of HEETN exam is maintained in the decoder 

machine learning [12]. At each time step, this layer takes the decoder hidden state and outputs a 

probability distribution over all words in its vocabulary. 

 

 
 

Figure 2. Overview of the system, which compromise of user interface and a chatbot server that contain 

principle component to realise automated diagnosis. 

  

First, decoder hidden state is initiated with final encoder hidden state, ℎ0
𝑑𝑒𝑐 = ℎ𝑛

𝑒𝑛𝑐. Then, logic and rule 

parser token are passed as first input to the decoder and update first hidden state, ℎ0
𝑑𝑒𝑐 =

𝑟𝑛𝑛𝜃[ℎ𝑛−1
𝑑𝑒𝑐 , 𝜔𝑡]. Next is to sample (or take one with max probability) first word from first SoftMax 

layer 𝜔𝑡+1~𝑝𝑡+1 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑔𝜑(ℎ𝑡
𝑑𝑒𝑐)). Finally, pass this word as input, update hidden state and 

generate new word. Repeat step 4 until logic and rule parser token is generated or maximum answer 

length is exceeded. More simply, the network predicts the next word in the sequence by providing it 

with a correct prefix. Training is performed via maximum likelihood training, which leads to classical 

cross-entropy loss [12]: 

 

                                                   𝐿 =  ∑ ∑ 𝐼[𝑦𝑡 = 𝑖]𝑙𝑜𝑔𝑝̂𝑡,𝑖 = ∑ 𝑙𝑜𝑔𝑝̂𝑡,𝑦𝑡
𝑚
𝑡=1

|𝑉|
𝑖=1

𝑚
𝑡=1                                                 (1) 

 

Where, 𝑦𝑡 is a correct word in reply at time step t. 

 

2.4 Contactless vital sign monitor 
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As mentioned above, the first step of image amplification technique is to spatially filter the video 

sequence to obtain basebands of different spatial frequencies. The topmost image, that is, the image that 

in contrast with changes in blood volume in a portion of the peripheral microvasculature had the lowest 

spatial frequency and the highest signal-to-noise ratio, hence can use the maximum magnification, and 

the magnification of the next layer is sequentially decreased. In addition, it is easy to approximate the 

heart rate signal where images with higher spatial frequencies, such as the original video image, 

approximate with Taylor series expansion for reconstruction, as shown in Figure 3. In a nutshell, the 

contactless vital sign monitor can be visualised in block diagram as follows: 

 

 
 

Figure 3. Step for vital sign via Eulerian video magnification. 

 

3. Result and Discussion 

Comparative analysis between our developed method and existing methods was performed. Based on 

Figure 4, vital sign result was based on the Eulerian magnification, specifically the heart rate 

measurement. All results in this section were processed with temporal filters unless otherwise noted.  

 

 
Figure 4. User Interface of the Contactless Vital sign Monitor. Graph A shows the heart rate while  

graph (B) shows the breath rate. 

3.1 Disease identification accuracy 

Disease identification metrics such as Dice indexes (DI), Jacard indexes (JI), false positive (FP) and 

false negative (FN) were used to validate the performance of proposed automated diagnosis of common 

disease. In this test, performance of the developed system on common cold (viral rhinopharyngitis), 

TTH and migraine as shown in Table 1 were measured 

Table 1. Performance of measured result 

 

Disease 
Acc 

(%) 
Precision Sensitivity Specificity 

F-

Measure 
DI JI 

C. Cold 96.667 0.9678 0.9670 0.0126 0.9583 0.9753 0.9711 

TTH 93.333 0.9357 0.9340 0.0187 0.9096 0.9640 0.9390 

Migraine 89.876 0.8850 0.8825 0.0346 0.8550 0.8976 0.8314 

Based on Table 1, it can be seen that migraine had lower accuracy due to a lot of subclasses for the 

machine to pin down exact root symptom. Yet, the system still performs better than threshold accuracy, 

which is over 96.667% for common flu, and 93.333 for TTH. The overall system had more than 0.85 

true positive or sensitive, which provide high probability sample for disease identification. 

A 

B 
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3.2 Comparison with pulse sensor and electrocardiogram 

Based on comparison with pulse sensor and ECG system in Figure 5, it is found out that the developed 

system had mean difference of 1.25 for pulse sensor and 2.92 for ECG for the heart rate measurement. 

This is because, our contactless system suffers from outdoor occlusion and changing intensity, but with 

closed room, the difference might be lower.  

 

      
 

Figure 5. The results of 12 sample readings from pulse sensor, ECG and our system. 

 

Mean average error (MAE) was calculated to determine the difference between two continuous heart 

rate measurements. This was performed to obtain the error contributes to MAE in proportion to the 

absolute value of the error. In addition, the feasibility of the system can be observed in ways that 

disregard the direction of which a measure that place emphasis on this is significant on same scale as 

the data being measured [13]. The formula to calculate MAE is as follows: 

 

                                                 𝑀𝐴𝐸 =  
1

𝑛
∑|𝐴𝑐𝑡𝑢𝑎𝑙 − 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡|                                                    (2) 

 

From the pulse sensor, the MAE attained is 1.167 and for ECG is 2.917. This is obvious because pulse 

sensor calculates heart rate based on constitutes another means of determining the timing of cardiac 

cycles via continuous monitoring of changes in blood volume in a portion of the peripheral 

microvasculature while ECG measure the bio-potential generated by electrical signals that control the 

expansion and contraction of heart chambers. ECG should have highest accuracy to benchmark for heart 

rate, but as per monitoring and initial diagnosis, the threshold for error is less than 3 in which the system 

performs above the threshold [14]. 

 

4. Conclusion 

In terms of computer diagnosis or medical information system, the diagnostic system with learning 

capability is very useful. As regards, the automated diagnosis, bivariate in terms of quantity either a 

symptom occurred or not, using the highest probability method where there are many diseases need to 

be identified, with 99.667% for common cold, 93.333% for TTH and 89.876% for migraine, method of 

maximum probability is practical and powerful [15].  With the in cooperation of contactless vital sign 

monitor, an error of 1.16 for pulse sensor and 2.917 for ECG which are still below threshold error offers 

user to accurately measure vital signs in a non-obtrusive way, and to provide them with the data required 

to determine to the right timing for any intervention procedure. This system helps bedridden patients 

who usually stay at home yet require a constant health monitoring without having to wear or attach to 

bulky medical equipment [16] which can bridge the gap of inter-operability between client and medical 

provider.  
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