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Abstract: The thermal imagine provides data with synoptic coverage for investigating thermal 
information from hot sources for detecting, mapping energy loss from the industrial area.  This 
study attempts to retrieved heat loss from the industrial area using Landsat-8 TIRS experimented 
at an industrial area of Pasir Gudang, Peninsular Malaysia, the main objective is to investigate 
the sensitivity of Landsat-8 TIR for detecting industrial thermal energy within the various range 
of targets of different temperatures. An estimated heat map with absolute surface temperature 
values is the final output.  Apart of the pre-processing of Landsat-8 TIRS data, data are processed 
for the retrieval of land surface temperature, then subjected to a downscaling process to final 30 
x 30 m pixels, hence enable to merge with all Landsat-8 bands for visualization and validation 
of results.  The split window algorithm (SWA) is used for the temperature retrieval from band 
10 and 11, with other driven parameters. The Multiple Adaptive Regression Splines (MARS) 
model for spatial downscaling was adopted in this study.  The generated thermal energy map 
was then validated over selected targets in the field and compared to corresponding downscaled 
MODIS LST product (MODIS11A2). TIR bands applied with SWA generated 13.7oC 
temperature dynamic range from 22.35~51.36o C in comparison with MODIS LST product 
values range from 27.17 ~ 37.65°C).   Results indicated good agreement between the generated 
thermal energy map with the in-situ validations (RMSE=0.43 oC).  It is therefore concluded that 
derived Land surface temperature map derived is suitable for study industrial thermal 
environment at 1:50,000 ~ 100,000 scales, adequately to be used for environmental impact 
assessment. 
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1. Introduction 

Thermal imagine is an authoritative means for exploding the thermal information used to repossess LST 
[1]. Cognition of the LST is an indicator that can offer valuable data from the various geophysical 
environmental application (geological studies, mineral exploration and evapotranspiration)[2, 3]. 
Consequently, The advancement in remote sensing technology offers an opportunity to provide a 
reliable, consistent and repeatable approach within the working frame from local to a global scale, as 
well as long term monitoring oil spillage operations [4, 5]. The development and changes related to land 
cover and urban features have been associated with industrial heat emission, where the surface air 
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temperature is becoming higher compared to the surrounding environment [6]. There is a need for 
industrial heat regulations which will attach to green space to monitor the heat intensity from industrial 
heat emissions through a descriptive technology [7, 8] In connection with ground truth measurement of 
air temperature [9]. 

Therefore, the study of LST contributes in identifying the extent of high temperature from the 
thermal information over the different urban land cover boundary which limited to a comparatively 
small area in which concurrently measured air temperature through the full stretch. Thus, the remotely 
sensitively approached for LST offered an option to capture the relatively small area as good as a larger 
area. However, the special solution for such datasets which ranging from 60m to 100m TIRS and 1000 
m MODIS product is insufficient to capture a little lot of industries that emit heat in relation 
heterogeneous ground features [10]. Established in the preview literature on prominent research, 
downscaling studies of coarse spatial resolution LST of the developed areas were relatively targeted 
with final downscaling special resolution comprising 1000 m, 480-120m, 6m-90m, 50m, and  30m [11-
15]   with downscaling factors, recently attempt on downscaling to 2m special resolution. 

In this paper, we apply medium resolution data from Landsat 8 TIR bands (10 and 11) to generate 
LST image for Pasir Gudang industrial area based on the relationship with MODIS product data, which 
the technique for multiple adaptive regression splines (MARS) was tested to suit diverse regression 
function into different n-dimensional data [12]. Nevertheless, the MARS techniques predict the special 
distribution of environmental activities, mostly limited to soil mapping [13] and landslide detection [14]. 
Therefore, we undertake to use MARS in LST downscaling for the industrial area of Pasir Gudang. The 
objectives of this study present as follow; (i) To explore the techniques for downscaling spatial 
resolution images for both Landsat-8TIRS and MODIS LST product for enhancing the accuracy of the 
downscaled map (ii) to investigate the sensitivity of Landsat-8 TIR for detecting industrial thermal 
energy heat emission within various range of targets for different temperatures (iii) and to evaluate the 
link between the industrial material and thermal energy at microscales (1:50,000 ~ 100,000 scales) [18, 
19].  Therefore, the potential of Multivariate Adaptive Regression Splines model is suitable for study 
industrial thermal energy for impact assessment. Therefore, detecting, mapping, and monitoring of 
industrial heat energy sources to support understanding toward improving disparities on existing 
industrial substances for policymaker’s implementation. 
 
2. Study Area  

Pasir Gudang industrial is one of the large leading industrial estate located in Iskandar Johor, peninsular 
Malaysia at large, which located between latitude 1° 30’10’’N and 103° 56’8’’ E, with the approximate 
total area of 359.57 Km2 (138.83 sqm) with an approximate population of about 46,571 to a density of 
130 km2 (340/sqmi) Figure 1[17].  

The major energy sources include the primary fuel gas and the secondary fuel oil, which recognized 
as the biggest gas turbine power station in Malaysia. The temperature of the study area is influenced by 
the two main seasons; Winter period (Northeast monsoon) brings heavy rainfall mostly to the east coast 
states during November to March, and Summer period (Southwest monsoon) signifies relatively with 
drier weather during May to September [18]. 
 
3. Material and Method 

In this study, satellite-based data from Landsat 8 TIRS and MODIS LST product shown in (Table 1) 
was acquired. The satellite data was taken in the perspective of exertion along with the account of LST 
for which summer acquisition date to be free cloudy image [19]. However, there is a large uncertainty 
from TIR band 11 from Landsat 8, [20] thereby choose to use both TIR band 10 and 11 as a single 
spectral band for the retrieval of LST using the split-window algorithm [21]. The data taken from two 
different sensors were processed in a multi-software program (ArcGis10.5 and Erdas imagine 2014) for 
the analysis. Therefore, this paper intended to test the ability of TIR sensors from Landsat-8 to records 
LST from Pasir Gudang industrial area. To achieve these objectives, the following steps were actualized 
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shown in ‘figure 2’ pixels values conversion of TIRS bands to TOA spectral radiance, then to brightness 
atmospheric temperature then lastly from at-satellite temperature LST through implementing the SW 
algorithm, and finally, the statistical analysis was carried out using regression function. 
 

 
Figure 1. Location of the study area. 

3.1 Conversion of digital number (DN) to radiance 
The top of atmospheric (TOA) of the OLI band (2-7) and TIRS sensor band (10 and 11) are estimated 
separately. The sensor converts a raw image into the spectral radiance, the equation is realized using 
ArcGIS 10.5 software package 

𝐿𝐿𝜆𝜆 = 𝑀𝑀𝐿𝐿 × 𝜑𝜑𝑐𝑐𝑐𝑐𝑐𝑐 + 𝐴𝐴𝐿𝐿 − 𝑄𝑄𝑖𝑖                                                       (1) 

where, Lλ     is the TOA spectral radiance (watts/(𝑚𝑚2srad ∗  μm))  ;  𝑀𝑀𝐿𝐿 – band-specific 
multiplicative rescaling factor obtained from the metadata Table 3 [22]. 

3.2 Conversion to at satellite Brightness temperature (BT) 
BT is the electromagnetic radiance moving upward from the top of earth’s atmosphere to allow the 
thermal calibration conversion (The DN values of TIR band 10 and 11 to TOA spectral radiance), 
(USGS Handbook, 2013) equation 1. therefore, The BT is not a temperature on the ground rather is the 
temperature at the satellite. 

𝑇𝑇𝐵𝐵 = 𝐾𝐾2
𝐿𝐿𝐿𝐿 ��𝐾𝐾1𝐿𝐿𝜆𝜆

� + 1�� − 273.15                                              (2) 

where: 𝑇𝑇𝐵𝐵- At satellite brightness temperature (K); 𝐾𝐾1-Calibration constant 1 (watts/(𝑚𝑚2srad ∗
 μm); 𝐾𝐾2 -Calibration constants 2, However, the values are in Kelvin (K), to have it in Celsius degree, 
it is necessary to consider by adding absolute zero which is equal to -273.15. 

 

 

 



IGRSM 2020

IOP Conf. Series: Earth and Environmental Science 540 (2020) 012059

IOP Publishing

doi:10.1088/1755-1315/540/1/012059

4

Table 1. Specification of the data used in the study. 

Sensors Bands SR Path/Row Date 
TIR band (10 & 11) TIRS bands  

(10,11), OLI 
(5,4) 

100m 125/59 24/5/2018 

MODIS/MOD11A2 TIRS bands 
(31,32) 

1000m MOD21_L2 Terra 24/05/2018 

3.3 Land surface Emissivity 
Accurate LST estimation from  TIR bands (10 and 11) rely on atmospheric effect features with adequate 
knowledge of LSE [23]. The LSE and LST are two substantial variables used to identified land surface 
processes and charge of radiation budget. Therefore, this paper, the NDVI-based emissivity process was 
implemented to estimate the NDVI derived from TIR bands (10 and 11) data. The NDVI was categorised 
into bare soil (𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 < 0.2), mixture of bare soil and vegetation (0.2 ≤ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 ≤ 0.5), and fully 
vegetation (𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 > 0.5), each of these classes is estimating using the following equation [27, 28].  

 

FVC = [
(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑖𝑖𝑚𝑚)

(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑐𝑐𝑚𝑚 − 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑖𝑖𝑚𝑚)]2                                               (3) 

 
𝜀𝜀𝜆𝜆 = 𝜀𝜀𝑣𝑣𝜆𝜆𝐹𝐹𝑁𝑁𝐹𝐹 +  𝜀𝜀𝑠𝑠𝜆𝜆(1 − 𝐹𝐹𝑁𝑁𝐹𝐹) + 𝐹𝐹𝜆𝜆                                            (4) 

 
Where;  𝜀𝜀𝑠𝑠 𝑎𝑎𝐿𝐿𝑎𝑎 𝜀𝜀𝑣𝑣 represents the emissivity of vegetation and soil respectively, 𝐹𝐹𝑁𝑁𝐹𝐹 represent 
proportional of vegetation, and C represent the surface roughness with a constant value of 0.005 [26]. 

The NIR and red band used to estimate the NDVI values: This study realised the NDVI for soil as 
-0.334 (NDVImin), while for vegetation as 0.6459 (NDVImax). 

 

NDVI =
NIR(band5)− R(band4)
NIR(band5) + R(band4)                                            (5) 

 
3.4 LST Retrieval 
The LST can be retrieved using the SW algorithm developed by [25] for Landsat -8 TIRS. According 
to [27], the Split-Window methods use two TIRs bands classically located in the atmospheric window 
between 10 and 12 𝜇𝜇𝑚𝑚, The mathematical structure for estimating the LST Landsat 8 can be articulated 
as [25, 28], expressed in Equ (6): Where Tsis given as; 
 

𝑇𝑇𝐵𝐵10 + 𝑐𝑐1(𝑇𝑇𝐵𝐵10 − 𝑇𝑇𝐵𝐵11) + 𝑐𝑐2(𝑇𝑇𝐵𝐵10 − 𝑇𝑇11)2 +⋯ 
+𝑐𝑐0 + (𝑐𝑐3 + 𝑐𝑐4𝑤𝑤)(1− 𝜀𝜀) + (𝑐𝑐5 + 𝑐𝑐6𝑤𝑤)∆𝜀𝜀                (6) 

 
𝑇𝑇𝑠𝑠 is given as Land surface Temperature; 𝑇𝑇𝐵𝐵10, 𝑇𝑇𝐵𝐵11 are the Brightness temperature of band 10 and 

11 of Landsat -8; TIRS W is the atmospheric water vapour contents (g/𝑐𝑐𝑚𝑚2). 𝜀𝜀 mean emissivity; ∆𝜀𝜀 
emissivity differences; 𝑐𝑐0 to 𝑐𝑐6- is the SW coefficient values. The coefficient values for SW were shown 
in Table 2 [32, 33]. 
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Figure 2. Methodological flowchart. 

Table 2. SW coefficients values for TIRS bands of Landsat-8 imagery. 

Constants 𝑐𝑐0 𝑐𝑐1 𝑐𝑐2 𝑐𝑐3 𝑐𝑐4 𝑐𝑐5 𝑐𝑐6 
Value -0.268 1.378 0.183 54.300 -2.238 -129.200 16.400 

3.5 Verification of the results 
As a result of the inaccessibility of different LST, the downscaled map was validated using the retrieved 
Landsat 8- TIR bands. Consequently, the developed models were proved by adjusted R2 at the same 
calculate the RMSE between the derived TIRS data and downscaled LST map, RMSE was calculated 
in two approaches. Firstly, RMSE2/4m was calculated from two differences between the observed 
LST30(100)m, resampled to 30m spatial resolution with the nearest neighbour method to enable the 
calculation presented in equation 7 and download map LSTMARS2/4m [10]. 

𝑅𝑅𝑀𝑀𝑅𝑅𝑅𝑅2/4𝑚𝑚 = �1
𝑁𝑁

 �(𝐿𝐿𝑅𝑅𝑇𝑇30(100)𝑚𝑚 − 𝐿𝐿𝑅𝑅𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀2
4𝑚𝑚

)2                (7)
𝑁𝑁

𝑖𝑖−1

 

Therefore, 𝑅𝑅𝑀𝑀𝑅𝑅𝑅𝑅2/4𝑚𝑚 was calculated an evaluation between Landsat8 derived map and downscaled 
map adjusted for residual(∆𝐿𝐿𝑅𝑅𝑇𝑇30(100)𝑚𝑚) map  𝐿𝐿𝑅𝑅𝑇𝑇′𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀2

4𝑚𝑚
 . equation (8) 
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𝑅𝑅𝑀𝑀𝑅𝑅𝑅𝑅′2/4𝑚𝑚 = �1
𝑁𝑁

 �(𝐿𝐿𝑅𝑅𝑇𝑇30(100)𝑚𝑚 − 𝐿𝐿𝑅𝑅𝑇𝑇′𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀2
4𝑚𝑚

)2                 (8)
𝑁𝑁

𝑖𝑖−1

 

 

4. Result and Discussion 

The study aimed to evaluate estimated LST from Landsat TIR bands for Pasir Gudang industrial using 
the MODIS LST product as a prey. In context, the method being used was highlighted for retrieving 
LST; the retrieved LST from Landsat-8 was compared with MODIS derived-LST, which covers entire 
Peninsular Malaysia daily in three MODIS thermal infrared bands (29, 31, and 32) at a spectral 
resolution of 1000 m at nadir, which spans from 3.66 to 14.28 microns. The images used in the study 
have different standards, with a spatial resolution of 1000m for MODIS and 100m for Landsat-8 TIR. 
Therefore, MODIS LST product with 1000m was resembled 500 m before the integration using ArcGIS 
10.5 software ‘figure 3’. Thus, the two LST distributions are reliable, the retrieved LST range from 
22.36°C to 51.36°C with a mean of 36.85°C. Though, the retrieved MODIS LST values are far less than 
that of Landsat-8 with the variation of 13.71°C (Landsat-8 _LST 22.36 to 51.36°C and MOD_LST 
27.17°C to 37.65°C). This is attributed as a result of; (i) Existed time variation of 30 min. between the 
sensors as well as rapid changes in LST of impervious surfaces caused by the high reflectivity from 
thermal objects,(ii) the contents of water vapour parameter in producing MODIS LST product is 
received by their difference between channels,(iii) Reassembled the spatial resolution of retrieved LST 
from 100 m to 500 m result in the extend of a scaled effect [32]. The linear regression plots were realised 
using 55 samples from the comparative values to validate and analyse the relationship between the two 
different sensors used (MODIS LST product and TIR bands 10 and 11). Therefore, the statistical model 
indicates shown in ‘figure 5’ indicate the correlation coefficient as R2 0.78, and 0.82, which shows the 
significant positive correlation between retrieved LST from Landsat-8 using split-window algorithm 
and MODIS LST data product provided by the USGS through NASA.  

The statistical analysis of the LST value of the Pasir Gudang industrial area in 2018 (Table 4) shows 
a correlation between land cover and the estimated LST. The industrial area has the highest LST, and 
Agricultural activities have the lowest LST. The average LST value of the 1ndustrial area is 37.33°C 
and for Agricultural activity is 30.19°C. The greenness areas have a lower LST average compared to the 
developed area (industrial and built-up area). Therefore, this survey suggests the existence of vegetation 
and the land cover be imputed to the decrease of LST in the study areas. 

 

 
 

Figure 3. Retrieved LST (a) Landsat-8 (b) MODIS LST product. 
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Figure 4. The histogram distribution of features classes in Pasir Gudang industrial area.  

 
Table 3. Statistical features of LST values in Pasir Gudang industrial area. 

Class Area Percentage Emissivity NDVI Max Std 
Industries 3007.890 31.323 0.994 0.101 51.360 3.140 
Bare Land 855.630 8.912 0.995 0.204 45.581 2.307 
Grass Land 4101.482 42.710 0.991 0.435 30.671 2.922 
waterbody 196.741 2.052 0.990 0.135 28.026 3.595 
Agriculture 1441.173 15.013 0.991 0.646 32.820 1.355 

 
The highest LST values were mostly set up in the industrial hotspot sources. The greenest area 

covers the dominant part with 42.7%. In disparity, agricultural activity area was set up with the minimum 
LST of about 32.82°C. The correlation of NDVI and LST distribution expressed by the linear correlation 
‘figure 5’. The result indicates the relationship between NDVI and retrieved TIRS LST has a negative 
correlation, well corresponds with another report [32, 33] which indicate that the vegetation area was 
useful for decreasing LST, there will be comfortability in an area with law LST when compare with 
higher LST. 

In this context, we demonstrated the priority on thermal waste heat changes in Pasir Gudang 
industrial area based on LST information. The highest significance is indicating red colour which is a 
high significance covered 30.1% has a great LST value range (LST> 50 °C). The second significance 
with yellow included 8.9% has an LST value (LST> 40 °C). While the third priority, indicating with 
green colour consists of 42.71% has an LST value (LST> 30 °C).  ‘figure 6’. The highest LST was 
traced in the industrial area, which barren land was mostly found, and the lowest temperature is marked 
in the highly elevated areas with dense vegetation cover. Similarly, moderate temperatures are 
apprehending social collective from the environment and public amenities. 
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Figure 5. (a) Linear plots of retrieved LST from TIR band 10 & 11 with MODIS LST product (b) Linear 
plots analyses of retrieved TIRS LST and NDVI. 
 

Some major heat source emission can be easily distinguished as shown in ‘figure 6’. The strong 
hotness of these classes was caused by an industrial emission and other artificial surfaces (asphalt, roof 
sheeting, etc.). Furthermore, surrounding features (empty land, sandstones) other features of LST 
emissions from the industrial area and the bare land nearby has LST>35°C, due to specific thermal 
properties and thermal inertia [35]. Besides, when bare land surface exposed to solar radiation warms 
up very rapidly between 08:00 and 12:00, which contrasts with the city and these areas significantly 
visible [36]. As well, the effect of Temperature on trees was attributed to two factors such as direct 
shading and evapotranspiration cooling [37]. 
 

 
Figure 6. The retrieved LST using split-window algorithm of Pasir Gudang industrial area. 
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Figure 7. Heat sources from the Industries (a) Oil and gas (b) Chemicals (a) Sheet/Glass. 

 

Table 4. LST and Emissivity values for the materials in the Pasir Gudang industrial area. 

Material Coordinate (°   ´    ´´) Temp.°C Emissivity 
Lotte Chemical 1 26 04.91   103 54 26.78 49.77 0.972 
Sheet/glass 1 27 04.12   103 55 25 91 49.68 0.971 
Food processing 1 26 36.17   103 53 24.00 46.45 0.973 
Oil and gas 1 27 30.94   103 53 57.83 49.16 0.976 
Hitachi Chemicals 1 27 04.29   103 54 38.52 48.91 0.971 
Heng Hiap Industries 1 28 32.19   103 55 15.56 48.28 0.968 
Lotte Chemical Titan. 1 28 31 34   103 55 15 10 50.21 0.968 

 

 5. Conclusion 

The thermal heat mapping for estimating LST from Landsat8 TIR data in the Pasir Gudang industrial 
area has been successfully implemented.  The thermal heat energy sources and other artificial surfaces 
(asphalt, roof sheeting) from the industrial plant from satellite sensors experienced high surface 
temperatures (>50°C), with accuracy (RMSE= +0.43°C). Vegetated covered surfaces including 
neighbouring agricultural areas marked the lowest temperatures (22~37 °C). The LST of selected targets 
have been validated using in-situ observation apart of comparison with corresponding downscaled 
MODIS LST product (MOD11A2), reporting a good agreement (R2 0.78, p < 0.001). Hence, the 
approach adopted manifest as a relatively simple yet robust method in mapping industrial area thermal 
heat energy sources. Hence, mapping, and monitoring of industrial heat emission to support 
understanding toward improving disparities on existing industrial substances for policymakers and 
industrial developers to draft policies and regulations for relevant industries, most significantly it will 
help in fast-tracking Target 9.4. and 11.6. to retrofit industries to make them sustainable, with increased 
resource-use efficiency and reduce the environmental impact of cities, by paying special attention to air 
quality and waste management in municipal by 2030. 
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