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 The fast development of mobile apps and its usage has led to an increase  
the risk of exploiting user privacy. One method used in the Android security 
mechanism is permission control that restricts the access of apps to core 

facilities of devices. However, that permissions could be exploited by 
attackers when granting certain combinations of permissions. So, this paper 
aims to explore the pattern of malware apps based on analyzing permissions 
by proposing a framework utilizing feature selection based on ensemble extra 
tree classifier method and machine learning classifier. The used dataset had 
25458 samples (8643 malware apps & 16815 benign apps) with 173 features.  
Three datasets with 25458 samples and 5, 10 and 20 features respectively 
were generated after using the proposed feature selection method. All the 
dataset was fed to machine learning. Support Vector Machine (SVM), K 

Neighbors Classifier, Decision Tree, Naïve Bayes and Multilayer Perceptron 
(MLP) classifiers were used. The classifiers models were evaluated using 
true negative rate (TNR), false positive rate (FNR) and accuracy metrics.  
The experimental results obtained showed that Support Vector Machine and 
KNeighbors Classifiers with 20 features achieved the highest accuracy with 
94 % and TNR with a rate of 89 % using the KNeighbors Classifier. The 
FNR rate is dropped to 0.001 using 5 features with Support Vector Machine 
(SVM) and Multilayer Perceptrons (MLP) classifiers. The result indicated 

that reducing permission features improved the performance of classification 
and reduced the computational overhead. 
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1. INTRODUCTION  

With the growth of smartphones and the services, they provide such as online shopping, health 

monitoring system, money transaction and many more. The frequent use of mobile devices with that facilities 

encourage people to store and share their personal and critical information through using mobile devices,  

and the wide use of devices with Android system makes Android-based mobile devices a target for malicious 

application developers [1]. These malicious applications may leak the user’s private information without their 
knowledge or consent. Since android operating system security model is based on application-oriented 

mandatory access control and sandboxing. Each application assigns a unique User ID and a set of 

permissions at the app installation time. Android developers must request permission to use these special 

features in a standard format that is parsed at installation time [2]. The permission model used in Android has 

many advantages and can be effective in preventing malware while also informing users what applications 

are capable of doing once installed [3]. When user download apps, that apps request some permissions to 

limit access to system resources. The applications can access resources on the condition that the permissions 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 19, No. 1, July 2020 :  543 - 552 

544 

are defined in manifeast file. Thereby, a security layer is created for the users. However, that permissions 

could be exploited by attackers This exploitation can be done via camera, SMS, call, audio, and image or 

location exploitation by attacking the system call, permission or API inside the Android smartphone [4-6]. 

Many studies employed machine learning in detecting attacks such as detecting phishing attack in the study of 

Jupin et al., [7]. In this paper, we will also utilize machine learning in exploring the requested permissions in 

android malware applications. Therefore, the contribution of this paper is to propose a framework to explore 

the permissions of android applications that are being requested at installation and run time by using feature 

selection method with the combination of using machine learning classifiers. The proposed feature selection 
method based on selecting the important features that contribute to class target using ensemble extra tree 

classifier. The proposed approach targets the binary class classification problem to classify android apps as 

malware or non-malware. The rest of this paper is organized as follows. Related work is introduced in section 

2. In section 3, we provide an overview of the methodology. The experimental setup is explained in detail in 

section 4. Results and discussion are clarified in section 5. Section 6 concludes the paper and presents 

possible future work. 

 

 

2. RELATED WORK 

The increase usage of mobile devices [8] and their applications with android system in the market 

has been led to conduct an active research in analyzing android apps to investigate the pattern of the 

malicious apps [9]. The Android- Manifest.xml file is one component of the Application Package file (APK) 
that has an essential information about the application and in which permissions are stored [10]. It declares 

which permissions the application must have to access protected parts of the API and interact with other 

applications. In order to protect Android users, applications access to resources is restricted with permissions. 

An application must obtain permissions in order to use sensitive resources like the camera, microphone, or 

call log [11]. Investigating and studying requested permissions have been done by many researchers. X. Liu 

and J. Liu [12] proposed a framework that uses machine learning techniques to get high detection accuracy 

with the potential of detecting Android malware applications based on permissions [12]. 

Wang et al., [13] studied the requested permissions of android app by analyzing the risk of an 

individual permission and the risk of a group of collaborative permissions. They used feature ranking 

methods such as mutual information, correlation coefficient, and T-test to rank Android individual 

permissions with respect to their risk and they used the sequential forward selection as well as principal 
component analysis to identify risky permission subsets. Three machine learning classifiers used to evaluate 

their experiment (support vector machine, decision trees, and random forest). Their method achieved 

performance with a detection rate of 94.62% and a false positive rate of 0.6%. Jiao et al., [14] proposed a 

hybrid detection method based on permission. The applications are detected according to their permissions to 

benign and malicious applications. Then, the suspicious applications are run in order to collect the function 

calls related to sensitive permissions. Furthermore, suspicious applications are represented in a vector space 

model and their feature vectors are calculated by TF-IDF algorithm. Their method achieved a true positive 

rate at 91.2 % and a false positive rate at 2.1 %. Ju et al., [10] analyzed the permissions of malicious 

applications to investigate the ability of them in recognizing suspicious applications. They studied the system 

of monitoring requested permission in mobile applications to check the permission request history of each 

application and manage applications. Altaher [15] proposed a hybrid neuro-fuzzy classifier (EHNFC) for 
Android malware classification using permission-based features to improve detection accuracy. However, the 

set of permissions required by any Android app during installation time is considered as the feature set which 

are used in permission - based detection of Android malwares. Those high dimensional feature set should be 

reduced to minimize computational overhead by choosing an optimal sub - set of features.  

There are many studies done on exploring that permissions; for example, Wang, et al., [13] used 

different methods of feature selection such as Sequential Forward Selection (SFS), and Principal Component 

Analysis (PCA). After selecting subset of features, they used SVM, Decision Tree and Random Forest,  

to detect suspicious apps based on the identified subsets of risky permissions. Verma et al., [16] used  

the information gain algorithm of feature selection to select the best features from the extracted features of 

android application package files. That method depends on the entropy of the attributes and selects the largest 

value of gain as the best feature. The study done by Altyeb Altahar [17] used two features selection 

algorithms, Information Gain (IG) and Pearson CorrCoef (PC) to rank the individual permissions and API’s 
calls based on their importance. Kumar et al., [18], proposed a novel approach to distinguish between 

malware and benign applications based on permission ranking, similarity-based permission feature selection, 

and association rule for permission. However, most studies investigate requesting permissions based at 

installation time. In this study, we focus on exploring permissions as a feature for android apps at installation 
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and run time to find out the pattern of them in identifying the risky apps. We also employed an extra tree 

classifier which is known for fast performance to select the important features [19]. 

 

 

3. METHODOLOGY 

The aim of our paper is to develop a framework to classify android app based on analyzing 

permissions to select the important subset of permissions features that are related to class target using 

ensemble extra tree classifier. 

 

3.1. Framework components 
The framework consists of the following phases: 

a) Dataset: The dataset consists of the following information such as App’s Package (the application’s 

package name), Permissions (a list of permissions declared in the malware and non-malware apps). This 

phase is described as a Pre-processing dataset in which the dataset is cleaned as depicted below in 

Figure 1. 

b) Features Selection: In this phase, a feature selection method based on an extra tree classifier applied to 

extract the important features as declared in Figure 1. 

c) Classification and Evaluation: In this stage, several classification machine learning algorithms or 

classifiers are applied. The dataset generated from the second phase (after applying feature selection 

method) and cleaned dataset are fed to machine learning to build machine learning models and classify 

the android app as malware or non-malware as explained in Figure 1. We used Scikit Learn libraries 
[20] to apply feature selection techniques and implement machine learning algorithms. 

 

3.1.1. Dataset  

We used the dataset of Mahindra [21] to build the dataset of our study. They collected around 

13,000 Android application packages (. apk) as normal apps from different resources and 6971 malicious 

applications from known sources such as Android Botnet data set [22], DroidKin data set [23], Android 

Malware Genome Project [24] and AndroMalShare [25]. They extracted the permissions at installation and 

run time after running the collected Android application packages (. apk) using emulator bluestack [26].  

In this study, we used the new version of their dataset that contains 18,850 normal android application 

packages and 10,000 malware application packages. The dataset has 173 permissions features (99 static 

permissions and 74 dynamic permissions), where each feature represents the permission. The occurrence of 

permission is represented by one while the absence of permission is represented by zero. The static 
permissions collected at installation time are denoted by (S) while the dynamic permissions collected at run-

time are indicated by (D). Those permissions were distributed among 30 categories of the apps [21].  

The dataset is a publicly available from the website that is described in their paper [36]. After cleaning the 

dataset and deleting the duplicated samples, we got 25458 samples (8643 malware apps & 16815 benign 

apps) with 173 features, labeled as malware and non-malware.  

 

3.1.2. Features 

The features used in this study are the app’s permissions that are requested during installation and at 

run time. The focus of this paper is to find the optimal set of permissions, a set that gives high accuracy and 

is more related to class target, out of all the permissions provided by an Android operating system. To 

accomplish this, we used inbuilt class feature_importances of extra tree-based classifiers. Figure 1 shows a 
diagram of our proposed framework. 

 

 

4. EXPERIMENTAL SETUP METHODOLOGY 

Our experiment includes the following steps: 

 

4.1. Implementation 

We used Python; the programming language to conduct our experiment by utilizing Scikit- Learn [20]. 

Scikit- Learn is one of the communities that has implemented a machine learning algorithm. 

 

4.1.1. Preprocessing 

In this stage, we deleted the duplicated samples and organized them as malicious and benign by 
labelling them as malware and non-malware. The permissions of applications are extracted through installing 

and run time. The features are stored as a binary matrix of (0, 1) binary values. After that, we applied a 

feature selection method to build a dataset with different reduced features. As described in Figure 1. 
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4.1.2. Feature selection  

The second phase of our framework is using the feature selection technique as shown in Figure 1.  

We used feature selection method based on ensemble extra Tree-based feature selection to select the 

important subset of features. Feature Selection is one of the core concepts in machine learning which hugely 

impacts the performance of the model. We used the feature importance property of the model. Feature 

importance gives a score for each feature of data between zero and one. The higher the score is, the more 

important or relevant is the feature towards the output variable. This score helps in choosing the most 

important features and drop the least important ones for model building. Feature importance is an inbuilt 
class that comes with Tree Based Classifiers, we used Extra Tree Classifier [27, 28] which implements a 

meta estimator that fits a number of randomized decision trees (a.k.a. extra-trees) on various sub-samples of 

the dataset and uses averaging to improve the predictive accuracy and control over-fitting to compute feature 

importance, which in turn can be used to discard irrelevant features. As depicted by Figure 1, the feature 

subset selection scheme starts with initializing the extra tree classifier. The classifier starts by building meta 

estimators. Each estimator represents the number of trees in the forest as explained in Figure 1. The attribute 

max_features search for the number of features to consider when looking for the best split of tree node where 

the search for a split does not stop until at least one valid partition of the node samples is found, even if it 

requires to effectively inspect more than max_features features. At each test node, each tree is provided with 

a random sample of n features from the feature-set from which each decision tree must select the best feature 

to split the data based on using the Gini Index. The function (“gini”) is used here by default to compute the 

Gini Importance of the feature by using the parameter feature_importances_ which is called also as the Gini 
Importance of the features. The output is ensembled using averaging to choose the important features.  

By averaging, the estimates of predictive ability over several randomized trees can help in reducing the 

variance of such an estimate and use it for feature selection. Every feature is ordered in descending order 

according to the Gini Importance of that feature. And to select the top n features, largest (n) function is used. 

For instance, to select the top 5, 10, and 20 features, (n) value is assigned to 5, 10, and 20 respectively as 

shown in Figure 1. After extracting the important permissions features, we plot the top 5, 10 and 20 features as 

demonstrated in the following figures.  

The top 5 important features that we obtained after applying feature importance feature selection 

method are declared in Figure 2. As we can observe from Figure 2, the permission (Default: read phone state 

and identity (S)) represents the most important feature with a score of 0.12. This permission Allows only 

access to phone state, including the phone number of the device, current cellular network information, the 
status of any ongoing calls, and a list of any Phone Accounts registered on the device. This permission is 

considered dangerous as declared by the studies in [13, 15, 16] because that permission allows the application 

to call phone numbers without user intervention. As a result, malicious applications may cause unexpected 

calls on a user phone bill. The permission (write contact data (S)) under Contact pattern comes in the second 

rank after (Default: read phone state and identity (S)) permission. This permission allows an application to 

write the user's contacts data [30, 31]. This permission is dangerous because it involves the user's private 

information, as declared in [18, 31, 32]. 

The permissions (Your accounts: contacts data in Google accounts (D)) asked at run time and 

allowed Sites and apps to request different kinds of access to Google Account, including requests to: 

a) See basic profile information: Many sites and apps only request access to basic info, including name, 

email address, and profile picture. When a user grants access to this info by choosing "Sign in with 
Google" on sites and apps that have this feature. Sharing this information makes it easier to create an 

account and helps the user avoid creating new passwords. 

b) See some information in Google Account: In addition to basic profile information, some sites and apps 

might also ask for permission to see and make a copy of information in the user account. This may 

include information like Contacts, Photos, YouTube playlists, and more. 

c) Edit, upload & create content in Google Account: In addition to seeing a basic profile and some 

information in the account, some sites or apps may ask for permission to do even more in Google 

Account. This may include editing, uploading, or creating content. For example, a film editing app may 

edit video and upload it to the YouTube channel, or an event planning app may create events on Google 

Calendar, with user permission [33]. 
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Figure 1. The proposed framework 

 

 

 
 

Figure 2. Top 5 important features with its feature importance score 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 19, No. 1, July 2020 :  543 - 552 

548 

The study done by Mahindru [21], categorized this permission as dangerous permission since asked 

by the most suspicious apps. Wang et al., [13] used mutual information, correlation coefficient, and T-test 

features selection methods to rank Android individual permissions with respect to their risk. Their method 

showed that (receive _SMS) permission has ranked the very top risk permission by the three ranking methods 

used. This type of SMS-related activities mainly contributes to the dominant threats [13]. The permission 

(access all Google services) grouped as one of the risky permission as identified by Mahindru [21]. The top 

10 features are selected by assigning the value of n with (10) in largest (n) method, Figure 3 highlights the 

top 10 important features selected. As we notice from Figure 3, static permissions have more propagation 
than dynamic permissions with an average value of 0.6. 

 

 

 
 

Figure 3. Top 10 important features with its feature importance score 

 

 

When we extracted the top 10 important features, we found out that the top 5 features that extracted 

above in Figure 2 occur again in the list of top 10 features as shown in Figure 3. However, static features still 

have the most distribution with an average of 0.6. As we observe from the Figure 3 above, the new 

occurrence of dangerous permissions such as (format external storage (D), read SMS or MMS (D), control 

location update notification (S), Audio File Access (S), access to passwords for Google accounts (D). These 

permissions listed as risky permission as stated by the study in [21].  
When we extracted the top 20 important, we find that most permissions percentage are dynamic 

permissions that occur during run time with an average of 0.55 as displayed in Figure 4. These dynamic 

permissions (read SMS or MMS (D), receive _ SMS (D), contacts data in Google accounts (D), format 

external storage (D), read calendar event (D), write contact data (D), add or modify calendar event and send 

email to guest (D), write browser’s history and bookmarks (D), read contact data (D), find (GPS) location (D) 

and: read phone state and identity (D)) are listed as dangerous permissions as proved by the study in [21]. 

 

 

 
 

Figure 4. Top 20 important features with its feature importance score 
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4.1.3. Classification and evaluation 

In this phase, we built classifier models using five machine learning classifiers Support Vector,  

K Neighbors Classifier, Decision Tree, Naive Bayes and Multilayer Perceptrons (MLP). We evaluated  

the classifiers by splitting the dataset to 17820 samples in the training set and 7638 samples in the testing set. 

We used four datasets with 25458 samples and 173, 5, 10, and 20 permissions features respectively. 

 

4.1.4. Evaluation metrics 

We used the following confusion matrices to evaluate our classifiers: 

Specificity: Specificity also called the true negative rate that measures the proportion of actual negatives that 

are correctly identified as such (e.g., the percentage of malicious apps that are correctly identified as 
malicious as described below: 

 

TNR = (TN / TN+FP) (1) 

 

The true positive (TP) in our study is the number of benign applications correctly recognized.  

And the false positive (FP) represents the number of malware applications wrongly identified as benign.  

The true negative (TN) indicates the number of malware applications correctly recognized. And the false 

negative (FN) represents the number of benign applications that are wrongly identified as malicious. 

 

False Negative Rate (FNR): FNR measures the proportion of all benign apps that will be identified wrongly 

as malicious apps as shown below: 
 

FNR= (FN / FN+TP) (2) 

 

Overall Accuracy (ACC): ACC measures the percentage of correctly identified applications: 

 

ACC= (TP+TN / TP+TN+FP+FN) (3) 

 

 

5. RESULTS AND DISCUSSION 

The result and discussion are explained in section 5.1 and section.5.2. 

 

5.1.   Results 
The outcome of our experiment is represented in this section, we conducted 4 experiments using 4 

datasets and 5 classifier algorithms. The first dataset consists of 25458 samples with 173 features. After using 

a feature selection method, we got three datasets with 25458 samples and 5, 10, 20 features respectively.  

The experiment measured the classifier’s TNR, FNR, and prediction accuracy. We used 70% of the data set 

as a training dataset and 30% as a testing dataset. So, there are 17820 samples in the training set and 7638 

samples in the testing set. Table. 1 depicts the evaluation metrics of each classifier algorithm with four 

dataset.  

The results show that using less features (20 features) improves the accuracy. For instance, using Support 

Vector and KNeighbors Classifier with 20 features achieved the highest accuracy with 94 %.  

However, Naïve Bayes achieved the best result of the accuracy of 90 % with 10 features while using 173 

features, the result obtained is 88 % which is the lowest rate. The best accuracy obtained was 95 % using 
Multilayer Perceptrons (MLP) with 20 and 173 features. In terms of FNR (the number of benign apps 

misclassified as malware), Support Vector and Multilayer Perceptrons (MLP) achieved the best result of 

0.001 with 5 features. Also, using Naïve Bayes, the result dropped from 0.1 with 173 features to 0.03 with 5 

features. KNeighbors Classifier produced the best performance in terms of TNR (number of malware 

classified as malware) with an 89 % rate using 20 features. However, Decision Tree produced the best 

accuracy of 94 % when we used all features (173 features) as shown in Table 1. 

 

5.2.   Discussion 

As we can see from our previous result that support vector machine (SVM) and KNeighbors 

Classifiers achieved good accuracy when we minimized the number of features from 173 to 20. Since SVM 

and KNeighbors classifiers are computationally expensive due to the implementation of quadratic 

programming and require more time to execute classification [34, 35], so reducing features helps in reducing 
the computation process and improving accuracy as well [37]. However, when we used probabilistic 

classifiers such as Naïve Bayes, the performance of accuracy is also improved with a 90.4 % rate using 10 

features. Moreover, since most 20 features that were selected as important features are dynamic permissions 
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features that asked at run time, we can conclude that choosing that permissions helps in improving the 

accuracy. Also, a different number of permissions requested by different kinds of apps gives evidence that 

permissions can be used as effective features to discriminate malware apps from benign apps since all that 20 

permissions are considered as risky and represent the target class as well [21]. In addition, from our result 

obtained it is observed that using less attributes in the feature space resulted in poor performance.  

The primary reason is that these features do not represent the target class. Therefore, in respect of the 

accuracy, adding features (20 features) in the feature space captures the salient information variability in the 

feature vectors of instances belonging to the class and thus improving the classification. Multilayer 
Perceptrons (MLP) yields the best performance that is the accuracy is increased from 0.85 to 0.95 with 20 

features, and all features. This gives evidence that using all features is not a guarantee that the best result 

would be found for a classifier. Furthermore, processing more features is computationally and timely 

expensive. In addition, we found that FNR decreased when we used the less features (5 features) to 0.001. 

Comparing our result with the result of study [17], we concluded that our method (feature selection based on 

extra tree classifier) achieved better accuracy with 94 % and 95 %, while study [17] achieved accuracy with 

89 using Information Gain (IG) and Pearson CorrCoef (PC) features ranking algorithms. From our findings, 

we can conclude that our proposed method based on Extra-Tree classifier helps in increasing accuracy and 

reducing computational burdens [38]. 

 

 

Table 1. The result of classification using different dataset of features 
Classifier algorithms Number of Features TNR FNR Accuracy 

 

Support Vector machine 

5 features 0.58 0.001 0.85 

10 features 0.78 0.09 0.91 

20features 0.85 0.01 0.94 

173 features 0.90 0.03 0.91 

 

KNeighborsClassifier 

5 features 0.70 0.08 0.85 

10 features 0.83 0.02 0.91 

20 features 0.89 0.02 0.94 

173 features 0.81 0.02 0.92 

 

Decision Tree 

5 features 0.78 0.17 0.81 

10 features 0.87 0.1 0.89 

20 features 0.90 0.07 0.92 

173 features 0.93 0.05 0.94 

Naïve Bayes 5 features 0.68 0.03 0.87 

10 features 0.79 0.04 0.90 

20 features 0.82 0.07 0.89 

173 features 0.83 0.1 0.88 

Multilayer Perceptrons 

(MLP) 

5 features 0.58 0.001 0.85 

10 features 0.78 0.01 0.92 

20 features 0.78 0.01 0.95 

173 features 0.89 0.02 0.95 

 

 

6. CONCLUSION 

Permission is one of the most important features for analyzing Android apps. Our proposed 

permission-based framework uses machine learning algorithms to classify the android app as malware or 
benign apps based on using Extra-Tree classifier feature selection method. Feature selection method based on 

ensemble extra tree classifier that has inbuilt class feature importance to assign a score for each feature of a 

dataset and select the important feature that closes to target class has been used. Four datasets were used with 

5, 10, 20 and 173 features respectively and five classifiers algorithms were used (Support Vector Machine 

(SVM), K Neighbors Classifier, Decision Tree, Naïve Bayes and Multilayer Perceptrons (MLP)).  

The classifiers models are evaluated using true negative rate (TNR), false-negative rate (FNR) and accuracy 

metrics. The experimental results show that Support Vector and KNeighbors Classifier with 20 features 

achieved the highest accuracy with 94 % and the highest TNR rate with 89 %. And we concluded that most 

dangerous permissions are requested during the run time and have more contribution in enhancing model 

performance as obtained by using Support Vector and KNeighbors Classifier with 20 features.  

Moreover, we concluded that our proposed feature selection method based on Extra-Tree classifier 

improves the classification accuracy and reduces computational loads. To further improve classification, in  
the future we will use different feature selection methods and investigate other fitness criteria to improve  

the efficiency of permission-based Android malware analysis. 
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