
TELKOMNIKA, Vol.17, No.4, August 2019, pp.2017~2024 
ISSN: 1693-6930, accredited First Grade by Kemenristekdikti, Decree No: 21/E/KPT/2018 
DOI: 10.12928/TELKOMNIKA.v17i4.12773   2017 

  

Received October 23, 2018; Revised February 27, 2019; Accepted March 20, 2019 

Co-clustering algorithm for the identification of cancer 
subtypes from gene expression data  

 
 

Logenthiran Machap*
1
, Afnizanfaizal Abdullah

2
, Zuraini Ali Shah

3
 

1,2
Synthetic Biology Research Group, School of Computing, Faculty of Engineering,  

Universiti Teknologi Malaysia 
3
Artificial Intelligence and Bioinformatics Group, School of Computing, Faculty of Engineering,  

Universiti Teknologi Malaysia  
*Corresponding author, e-mail: logmac_87@yahoo.com

1
, afnizanfaizal@utm.my

2
, aszuraini@utm.my

3
 

 
  

Abstract 
Cancer has been classified as a heterogeneous genetic disease comprising various different 

subtypes based on gene expression data. Early stages of diagnosis and prognosis for cancer type have 
become an essential requirement in cancer informatics research because it is helpful for the clinical 
treatment of patients. Besides this, gene network interaction which is the significant in order to understand 
the cellular and progressive mechanisms of cancer has been barely considered in current research. 
Hence, applications of machine learning methods become an important area for researchers to explore in 
order to categorize cancer genes into high and low risk groups or subtypes. Presently co-clustering is  
an extensively used data mining technique for analyzing gene expression data. This paper presents  
an improved network assisted co-clustering for the identification of cancer subtypes (iNCIS) where  
it combines gene network information with gene expression data to obtain co-clusters. The effectiveness of 
iNCIS was evaluated on large-scale Breast Cancer (BRCA) and Glioblastoma Multiforme (GBM).  
This weighted co-clustering approach in iNCIS delivers a distinctive result to integrate gene network into 
the clustering procedure. 
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1. Introduction 
Gene expression is the process by which the genetic information in deoxyribonucleic 

acid (DNA) is transcribed into a Ribonucleic acid (RNA) then translate to the protein where  
the process called transcription and translation respectively [1]. Microarray technology is  
a fundamental tool used to measure the gene expression levels of thousands of genes 
simultaneously [2]. Hence, the gene expression data matrix that has been produced from this 
technology under various conditions, where the row represent gene and column represents 
sample [3, 4]. Many different methods have been applied by scientists, for instance, early stage 
screening to identify cancer types. Nevertheless, assessment on accurate disease outcome is 
still remaining interesting and challenging tasks for physicians and pharmaceutical fields. 
Therefore, biomedical and bioinformatics researchers are focusing on machine learning 
techniques [5]. From high dimensional datasets, it is able to discover patterns and relationships 
by applying these techniques, besides cancer type able to be predicted effectively in future [6]. 

Hence, various computational analysis was carried out which are divided into 
comparative and non-comparative analysis. Figure 1 shows the general taxonomy of 
computational analysis. Hereafter many researches, clustering approaches from data mining 
field which is a part of machine learning have been applied to gene expression analysis.  
For example, k-means [7], hierarchical clustering [8], local self-organizing maps [9], local 
adaptive clustering [10] and many more were implemented in this analysis. The relationship 
between molecular mechanisms and dissimilar physiological states as well as gene expression 
signatures have been explored and identified by these approaches. Classical clustering 
approaches basically cluster the genes into mutually separate subsets, hence, the genes or 
conditions cannot fit into more than one cluster. On top of that, all the rows or all the conditions 
are taken into deliberation. Thus, certain genes may only be co-regulated and co-expressed 
under certain conditions and not in all conditions in the cellular processes. But, a gene may fit 
into multiple clusters because a gene may be able to participate in more than one  
molecular process [11, 12]. 
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Therefore, to overcome the limitation of traditional clustering, co-clustering becomes  
a substitute for the analysis of gene expression. Co-clustering [or bi-clustering] primarily clusters 
genes and samples simultaneously in order to identify subgroups of genes that show similar 
patterns under a certain subset of experimental conditions. The similarity in co-clustering, 
measured through the coherence of genes and samples in a co-cluster, rather than gene pairs 
or samples pairs function [11-13]. Furthermore, attaining of overlapping co-clusters is tolerable 
because in a different regulation pattern a gene can be involved according to the different 
measured group of conditions [14]. In finding of biologically significant patterns, co-clustering 
plays a vital role where those patterns are: with constant values in the whole co-cluster,  
with constant values in rows, with constant values in columns, with additive constant values and 
with multiplicative coherent values [15, 16]. 

 
 

 
 

Figure 1. General view on computational analysis category 
 
 

Previous research studies mentioned that co-clustering is often referred as bi-clustering, 
bi-dimensional clustering, two-way clustering or subspace clustering. At first, bi-clustering was 
introduced by Hartigan [17] whereas Cheng and Church [18] are the pioneers for applying  
bi-clustering in gene expression data analysis.At the early stage, co-clustering was implemented 
in other fields, for instance, search in database [17, 19], market search [20], target marketing 
[21, 22], text mining [23, 24] and analysing foreign exchange data [25].  

Furthermore, for the gene expression analysis various co-clustering techniques have 
been implemented [26]. Since Cheng and Church [18] are the discoverers of bi-clustering 
solution for the NP-hard problem for clustering of gene expression data. Greedy search was 
applied to overcome this problem to identify bi-clusters with low mean-squared residue score. 
Bi-cluster was found by removing and adding genes and conditions iteratively from gene 
expression data matrix for which mean-squared residue score is below the threshold value. 
Nevertheless, only one bi-cluster at a time has been produced from this iterative solution,  
so that makes difficulty to set a constant threshold. Thus, the iterative signature algorithm was 
developed in order to discover bi-clusters based on two-predetermined thresholds for rows and 
columns by [27].  

Scientists also take a step ahead to identify multiple bi-clusters at a time when they 
develop bi-clustering based on graph theory [28, 29], information theory [23], statistical  
method [30] and matrix factorization [31] approaches. Numerous different co-clustering methods 
were developed with different types of algorithms such as factor analysis bi-clustering (FABIA),  
the concept of gene expression motifs (xMOTIFS), Bayesian co-clustering (BCC), and minimum 
sum-squared residue co-clustering (MSSRCC) and so on. However, all of these methods have 
their own advantages and disadvantages where it can be applied for not all but certain suitable 
situation. Moreover, most of the previous research did not integrate biological evidence, for 
instance, molecular interaction networks into the clustering process. Molecular interaction 
networks play a vital role in each and every life processes and the mechanisms of the diseases 
are able to discover through the understanding of these networks [5, 32]. Though, in recent 
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times, the significance of network-based information has been found to be very valuable but  
the usage of this information in the current methods are still poor [11, 12, 33].  

Therefore, the motivation of this research is to improve cancer subtype identification  
by improving a method which is able to integrate molecular interaction networks with clustering 
process. This paper improves network-assisted co-clustering for the identification of cancer 
subtypes (iNCIS) algorithm. At first, this method calculates a weight for each gene as it is 
prominence to be utilised in the clustering process [34]. Basically, genes regulating a lot of other 
genes and showing extremely variable expression patterns will be deliberated as more 
significant in the clustering process. Additionally, implanting the gene weights into  
the co-clustering objective function is a dynamic part of the algorithm. 
 
 

2. Research Method 
In this research, a co-clustering method has been proposed by integrating prior 

knowledge of gene network interactions between genes with gene expression data and 
simultaneously cluster genes and samples into subtypes. Incorporating network structure in  
the clustering process will lead to a better selection of informative genes for clustering. Hence,  
it can be assumed that, more biologically significant co-clusters are produced. 
 

2.1. Datasets and Tools 
There were two datasets used in this research, they are large scale breast cancer 

(BRCA) [35] and glioblastoma multiforme (GBM) [36] from TCGA. The gene network was built 
from different sources such as Reactome [37], NCI-Nature Curated PID [38] and KEGG [39]. 
Co-clustering algorithm was implemented using MATLAB platform. Table 1 shows the details of 
gene expression data. 

 

2.2.  Assigning Weights to Genes 
Gene expression datasets are known as high dimensional, due to large number of 

genes and low number of samples. Significant genes selection from this high-dimensional 
dataset is important for clustering. Thus, gene network interactions with gene expression data 
utilized to obtain genes that play vital roles among samples. In this stage, weights are assigns to 
genes which are attained from the GeneRank method. The directed graph is used because  
a gene that regulates many other genes should obtain larger weights. In specific, NMAD 
(normalized median absolute deviation) is used for measurement of gene expression variation. 
This formulation helps in stabilising the weight assigning process.  
 

2.3.  Weighted Co-clustering 
After assigning weights to genes, the output such as gene weights and the sample of 

gene expression profile used for co-clustering interpretation. This method is based on  
Semi-Nonnegative Matrix Tri-Factorization (SNMTF) while Orthogonal Non-Negative Matrix  
Tri-factorization (ONMTF) imposed for the non-negative constraint. There are three key parts 
need to be considered in this stage. They are: 
a. Objective 

Let matrix   comprises   genes and n samples, then would like to group the genes into 

  clusters and group the samples into   clusters (subtypes). The objective function has been 
improved from the original which is minimizing the sum-squared distance between all entries of 
co-cluster and the centroid to minimize the sum-squared residue between entries and centroid 
of co-clusters. 
b. Optimization 

Once genes are assigned with weights, then the objective function will be contributing to 
optimize the matrix  . There will be iterations to decrease the value of objective function until 
convergence.  
c.   and   selection 

To obtain better results which are converging, iNCIS run for 50 times with randomly-set 

initiations and get a sample consensus matrix   ̌ and a gene consensus matrix   ̌. From every 

single run, an       sample connectivity matrix    and a     gene connectivity matrix    are 
obtained. The range of entries is between 0 and 1, where 0 represent samples [gene] belong to 
the different clusters and 1 represent they belong to same clusters. 
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Hereafter, Figure 2 shows the summarized methodology of this research in order to 
generate cancer subtype. As a first step, gene network information collected from specific 
database which shows 0 as absence of gene interaction and 1 shows presence of interaction 
among genes. This network information is then integrated with gene expression to obtain gene 
weights by GeneRank algorithm. And then, this output together with gene expression data used 
as input in incise algorithm to produce cancer subtypes. From the clusters predicted which is 
later used as class information to classify the cancer genes. Finally, cancer subtypes and genes 
are validated for functional association and drug target genes. 

 
 

 
 

Figure 2. General flow of methodology 
 
 

3. Results and Analysis 
In this section, it is explained the results of research and at the same time is given  

the comprehensive discussion. There were mainly two cancer gene expression datasets were 
implemented with the co-clustering algorithm.  
 
3.1. BRCA 
 BRCA dataset contains 17,814 genes across 547 samples. This gene expression profile 
integrated with gene network information and for 8726 genes weights are trained in both 
resources. Therefore, 8726 weighted genes and 547 samples were taken as the input for  
the co-clustering algorithm besides α = 0.85 was set. On top of that,     and     has been 
chosed for 50 runs. Once the subtypes are obtained, SVM used to train a classifier so that it can 
help for the patient diagnosis in future. Thus, 35 genes with largest weights were selected. 
 
3.2. GBM 

 The second dataset used is Glioblastoma multiforme which contains 11,861 genes and 
202 samples. Then gene expression is incorporated with gene network information to train 
weight for each of the 7,183 genes in both sets. In addition, α = 0.85 was set. After assigning 
weights to the 7,183 genes and 202 samples were implemented in co-clustering in where     

and     are fixed. From here, four subtypes have been identified. Results were obtained 
shown in Table 2 for both datasets. 

 
 

Table 1. Gene Expression Datasets 
Dataset Genes Sample 

BRCA 17814 547 
GBM 11861 202 

 

Table 2. Genes Selected from GeneRank Method 
Dataset Genes Sample 

BRCA 8726 547 
GBM 7183 202 

 

 
 

3.3. Discussion 
As mentioned above, the parameter values were fixed. This is because; the experiment 

was conducted with multiple values for m and c. Among these values, one set of best value was 
chosen according to average cophenetic correlation coefficient. This calculation was done to 
evaluate to cluster stability over 50 runs. The results were shown in Tables 3 and 4 for BRCA 
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and GBM respectively. Thus, from the result, the highest value considers the best parameter to 
be selected. In addition, the input value of α is also tested on various range from 0.1 ≤ α ≥ 0.9.  
It has been observed that, generally α=0.85 has better performance compared to other ranges. 

 
 

Table 3. Cophenetic Correlation Coefficient 
for BRCA 

             

    0.931 0.930 0.944 

    0.930 0.948 0.942 

    0.924 0.942 0.947 
 

Table 4. Cophenetic Correlation Coefficient 
for GBM 

             

    0.911 0.920 0.904 

    0.903 0.904 0.906 

    0.902 0.894 0.902 
 

 
 

As the first stage of analysis, rand index (RI) and F1-measure was adopted to evaluate 
the quality of clustering. From the Table 5 and Figure 3, it has been observed that, iNCIS 
performs better than other methods under both RI and F1-measure. It was a fairly comparison 
between NCIS and NetBC which is known as Network aided Bi-Clustering. Comparison was 
done on fairly node where the parameter setting for all the three methods iNCIS, NCIS and 
NetBC are the same. As an objective function for NetBC, the researcher adopts sum-squared 
residue from MSSRCC (minimum sum-squared residue co-clustering) [40]. Though  
the objective function for iNCIS and NetBC is similar, but other processes inside the core 
algorithm is differ. It can be concluded, iNCIS in an effective co-clustering method to identify 
cancer subtypes. The formula to measure RI and F1-measure are stated as follows. 

 

   
         

                     
  

 

Gene expression matrix,   {       } 
 

Cluster,    {          } 
 

    : Number of pairs samples that are both in the same clusters of C and C’ 

    : Number of pairs of samples that are in same clusters of C but in different clusters of C’ 

    : Number of pairs of samples that are in different clusters of C but in same clusters of C’ 
    : Number of pairs of samples that are in different clusters of C but in different clusters of C’ 

 

            
         

      
 

 

Sensitivity: The probability that classification result is positive when the gene pairs are 
interacting: 

 

  

     
 

 

Specificity/Recall [Re]: The probability that classification result is negative when the gene pairs 
are non-interacting: 

 

  

     
 

 

Precision [Pr]: The probability that the gene pairs are interacting when the classification result is 
positive: 

 

  

     
 

 

False-positive rate: The probability that classification result is positive when the gene pairs are 
non-interacting: 
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Table 5. Cancer Subtypes and Rand Index Comparison 
Datasets Methods Subtypes Number of genes Rand Index F1-measure 

BRCA iNCIS 5 35 0.9890 0.9839 
 NCIS 5 35 0.6400 0.7350 
 NetBC 5 20 0.7540 0.8350 

GBM iNCIS 4 30 0.9059 0.8616 
 NCIS 4 30 0.6750 0.6550 
 NetBC 4 28 0.7325 0.7150 

 
 

Further analysis need to be carried out regarding biological validation on gene subtypes 
obtain from iNCIS. Genes can be verified through DAVID database and PAM50. Beside this,  
the pathways enriched by each type cancer genes are also possible to analyse. After that, both 
of this cancer datasets are used for classification of subtypes. On top of that, since the true 
class of samples are unknown, clinical features analysis is required to evaluate the efficiency of 
clustering algorithm.  

 
 

 
 

 

Figure 3. (a) Rand index (RI) and (b) F1-measure of different co-clustering methods  
on two datasets 

 
 

4. Conclusion 
Cancer subtypes play a significant role in diagnosis and prognosis of cancer disease. 

This paper presented an improved co-clustering method called iNCIS, to obtain cancer subtypes 
from high-dimensional gene expression. On top of that, gene network information integrated in 
this co-clustering process in order to improve identification of more sample subtypes.  
The key advantage of this network information integration is bi-product, the gene weights which 
define the genes’ characters in the network and able to differentiate the patients. Further 
analysis need to be carried out on clinical features to evaluate effectiveness of the method. 
Beside this, optimal parameter tuning for           in iNCIS is needed to be designed to 
improve the results. Results show that, iNCIS is beneficial to comprehensively detect cancer 
subtypes and the key genes involved in each subtypes.  
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