
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

Energy Security and Chemical Engineering Congress

IOP Conf. Series: Materials Science and Engineering 736 (2020) 052012

IOP Publishing

doi:10.1088/1757-899X/736/5/052012

1

 

 

 

 

 

 

Preparation and physicochemical properties of zeolitic 

imidazolate framework-8 (ZIF-8)/rice husk derived graphene 

(GRHA) nanohybrid composites 

N F T Arifin1,2, N Yusof1,2*, N A H M Nordin3, N I C Raimi4, J Jaafar1,2, A F 

Ismail1,2, F Aziz1,2 and W N W Salleh1,2 

1Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi 

Malaysia, 81310 Skudai, Johor Bahru, Malaysia 
2School of Chemical and Energy Engineering (SCEE), Faculty of Engineering, 

Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru, Malaysia 
3Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 

Bandar Seri Iskandar, Perak, Malaysia 
4School of Mechanical Engineering (SME), Faculty of Engineering, Universiti 

Teknologi Malaysia, 81310 Skudai, Johor Bahru, Malaysia 
 

*norhaniza@petroleum.utm.my 

Abstract. This paper proposes an improve nanohybrid composites of Zeolitic Imidazolate 

Framework-8 (ZIF-8)/Rice husk Derived Graphene (GRHA). The main goal of this work is to 

prepare the nanohybrid composites with high surface area and enhanced porosity. The composite 

is prepared via aqueous room temperature method which is simple and fast. Based on Fourier 

transform Infrared (FTIR) and X-ray Diffraction (XRD) analysis, it shows that the produced ZIF-

8 is in sodalite (SOD) structure while GRHA is in amorphous due to the presence of multilayer 

graphene. Raman analysis shows that the prepared GRHA has a high degree of graphitization. 

The BET specific surface area (BETSSA) is found to increase up to three times higher (1632.10 

m2/g) as compared to pristine GRHA (518.11 m2/g) and ZIF-8 (687.32 m2/g) respectively. 

Therefore, it is envisaged that this composite can be very useful for hydrogen storage.  

1.  Introduction 

The demand of fossil fuel will keep increasing which can cause severe problem namely global warming. 

Hence, it is vital to overcome this issue by developing an alternative energies to the fossil fuels [1]. 

Hydrogen has been one of the best future energy as it can be used in electricity generation and alternative 

fuel for vehicles. Additionally, hydrogen is a clean energy as it does not emit CO2 which reduces the 

environmental pollution [2]. Nevertheless, hydrogen storage has become the major issue that need to be 

resolved [3]. Currently, there are several ways that can be used to store hydrogen such as liquefaction 

[4], compression [5] and metal-hydride systems [6]. However, of all the aforementioned methods, 

adsorption via porous materials such as activated carbon nanofibers [7], porous carbons, zeolites and 

metal organic frameworks (MOFs) is favorable because of it fast kinetics, good cyclability and excellent 

adsorption capacity [1]. Currently, adsorption via metal organic frameworks (MOFs) shows a great 

promise for hydrogen storage [8]. In general, MOFs is composed of inorganic metal connectors and 
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organic linkers [9] which have high surface area and porosity [10], ordered crystalline structures as well 

as enhanced mechanical stability [9]. Zeolitic imidazolate frameworks-8 (ZIF-8) which is made up of 

zinc (Zn) metal and 2-methylimidazole (MIM) [11] has been studied extensively. Interestingly, ZIF-8 

can be produced in deionized water at room temperature [12] which is fast and convenient [13].  

It was said that, the properties of ZIF-8 can be further enhanced with the addition of graphene as the 

composites will have a better performance (hydrogen storage) [14] and higher surface area [15]. 

Unfortunately, the discovery of methods of producing was still under rapid progress. Even though 

chemical vapour deposition (CVD) has been an established method to produce graphene [16], but this 

method was complicated [17]. Currently, conversion of biomass material into graphene has received 

tremendous attention [18]. Rice husk, waste corn shell, egg shell and gelatin were some of the biomass 

precursors that can be used as a starting material to produce graphene [18,19]. Typically, potassium 

hydroxide (KOH) was used to activate biomass precursors as it will helps in the formation of pores [20] 

and producing a high purity graphene [21]. In general, rice husk contains 80 % of organic constituents 

such as lignin, cellulose and hemicellulose while the other 20 % is the inorganic silicon dioxide (SiO2). 

Therefore, rice husk is one of the best precursors that can be used to synthesis rice husk derived graphene 

(GRHA) [22]. In this study, rice husk was activated with KOH to produce GRHA. Later, GRHA/ZIF-8 

hybrid nanocomposites were synthesized through simple aqueous room temperature method to improve 

the physicochemical properties and the adsorption capacity of the material to store hydrogen gas. 

2.  Materials and Methodology 

2.1.  Materials 

Rice husks were collected from Johor (Kilang Beras Jelapang Selatan Sdn. Bhd.). Zinc nitrate 

hexahydrate (Zn(NO3).6H2O, 99 %), triethylamine (TEA) and 2-methylimidazole (2-MIM, 99 %) were 

purchased from Acros Organics while potassium hydroxide (KOH) was purchased from Quality 

Reagent Chemical (QReC). 

2.2.  Synthesis of GRHA 

Rice husk was carbonized at 350 °C for 2 h to form rice husk ash (RHA). RHA (3 g) was mixed with 

KOH powder (15 g) and the mixture was annealed in a muffle furnace at 900 °C for 2 h. The GRHA 

was sonicated for 30 mins and washed with distilled water. Later, it was centrifuged at 3200 rpm for 10 

mins for several times until neutral pH was obtained. Lastly, GRHA was dried in an oven at 80 °C 

overnight [23]. 

2.3.  Preparation of ZIF-8 and GRHA/ZIF-8 

ZIF-8 was prepared using the procedure as discussed by [12]. For the composites, metal solution was 

prepared by adding 2.95 g of Zn(NO3)2.6H2O in 74 mL of deionized water and in a separate beaker, 0.2 

g of GRHA was dispersed in 26 mL of deionized water. Both of the solution was mixed and sonicated 

for 30 min. Meanwhile, the ligand solution was prepared by adding, 6.5 g of 2-MIM and 20 mL of TEA 

in 100 mL of deionized water. The ligand solution was then added into the sonicated solution for 1 h 

under vigorous stirring. The solution mixture was allowed to be centrifuged and washed with deionized 

water. The product was then dried in an oven at 60 °C for 24 h and grounded into fine particles [24]. 

2.4.  Characterization 

In order to determine the functional groups attached on the samples, Fourier Transform Infrared (FTIR) 

was used. The IR spectra was collected after 32 scans in the 4000 – 500 cm-1 regions. to determine the 

crystallinity of the samples, X-Ray Diffraction (XRD, Smart Lab, Rigaku) was used. Data was collected 

using Cu-Kα radiation (1.54 nm) in the range of 2θ from 5ᵒ to 50ᵒ. Brunauer-Emmet-Teller (BET) was 

used to analyze the surface area of GRHA, ZIF-8 and GRHA/ZIF-8. To analyze the degree of 

graphitization of GRHA, Raman spectroscopy (Horiba, Raman Xplora Plus) was used. 
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3.  Results and discussions 

3.1.  FTIR analysis 

GRHA shows a weak IR spectrum as it is lack of functional groups (Refer figure 1 (a)). Therefore, 

GRHA only exhibits an obvious C-O vibration around 1080 cm-1 [25]. In contrast, ZIF-8 (Refer figure 

1 (b)) confirms the presence of Zn-N and Zn-O bonds as it shows a vibrational peak at 657 cm-1 and 758 

cm-1 respectively [26]. On the other hands, peak at 1175 cm-1 and 1580 cm-1 indicates the stretching 

vibrations of C-N and C=N [27]. Interestingly, when GRHA is introduced into the nanocomposites, new 

stretching vibrations of C-H bond is formed (2930 cm-1) (Refer figure 1 (c)) [28].  
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Figure 1. FTIR spectrum of (a) GRHA/ZIF-8 (b) 

ZIF-8 (c) GRHA. 

Figure 2. Raman shift of (a) GRHA/ZIF-8 (b) 

ZIF-8 (c) GRHA. 

3.2.  Raman analysis 

ID/IG ratio of GRHA is calculated using Raman spectroscopy. This calculated value will indicate the 

degree of graphitization of GRHA [29]. In this study, it is found that the ID/IG ratio of GRHA (Refer 

figure 2 (c)) is 0.45 which suggest that the degree of graphitization of the sample is relatively high 

[30,31]. However, the intensity of D (1343 cm-1), G (1577 cm-1), and 2D (2675 cm-1) peaks are quite low 

due to the multilayer structural defects [32]. For ZIF-8 (Refer figure 2 (b)), peaks at 390 cm-1 shows the 

Zn–O–Zn vibrational bands and this peak can still be observed even after the addition of GRHA [33] 

Therefore, it can be said that the addition of GRHA did not alter the Raman peak of GRHA/ZIF-8 (Refer 

figure 2 (a)). 

3.3.  Crystallinity study 

Figure 3 (a) depicts that GRHA corresponds to few layers of graphene as it shows broad peak at 2θ = 

26.62ᵒ (002) [34]. In addition, the broad peaks indicates that the GRHA is in amorphous state because 

of the presence of multilayer GRHA [27]. However, this result is similar as reported by [18]. On the 

other hand, XRD diffactogram of ZIF-8 (Refer figure 2 (c)) confirms the sodalite (SOD) structure of the 

samples because all peaks at (011), (002), (012), (022), (013), and (222) are observed [35]. Hence, a 

pure ZIF-8 has been successfully synthesized via aqueous room temperature method [36]. It can be seen 

from figure 3 (b) that the GRHA/ZIF-8 XRD diffactogram shows a higher peak intensity as compared 

to pristine ZIF-8 because the introduction of GRHA able to remove guest molecules in the composites 

[12]. Nevertheless, the XRD diffactogram of both ZIF-8 and GRHA/ZIF-8 are almost similar. Therefore, 

it can be said that the addition of GRHA into the composites did not change the formation of ZIF-8 

crystal structure [37].  
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Figure 3. XRD spectrum of (a) GRHA (b) GRHA/ZIF-8 (c) ZIF-8. 

3.4.  Surface area analysis 

In this study, the GRHA shows a BET specific surface area (BETSSA) of 518.11 m2/g while ZIF-8 is 

687.32 m2/g (Refer table 1). Interestingly, the nanocompoites of GRHA/ZIF-8 shows a significant 

change in the surface area where it shows BETSSA up to 1632.10 m2/g. The improvement of BETSSA of 

GRHA/ZIF-8 is due to the combination of microporosity of ZIF-8 with mesoporosity of GRHA [24]. 

Moreover, the synergistic effect between GRHA and ZIF-8 also contributed to the increment of BETSSA 

of the nanocomposites [38]. Besides that, the removal of guest molecules and formation of new pores 

after the addition GRHA also contributed to this phenomenon [39]. Previously, the highest BETSSA 

obtained from GO/ZIF-8 is only 202 m2/g [24] and 917 m2/g [38]. This study produced GRHA/ZIF-8 

nancomposites with BETSSA of 1632.1 m2/g which proves that our nanocomposites have an enhanced 

surface area. 

 

Table 1. Specific surface area and porosity data. 

Sample BETSSA (m2/g) Total pore volume 

(cm3/g) 

Micropore 

volume (cm3/g) 

GRHA/ZIF-8 1632.10 1.1694 0.8318 

ZIF-8 687.32 0.3795 0.3036 

GRHA 518.11 0.3346 0.2927 

4.  Conclusions 

GRHA was synthesized through chemical activation using KOH whereas ZIF-8 and GRHA/ZIF-8 were 

formed through aqueous room temperature method. It is found that new C-H bond is formed which 

confirms the interaction between GRHA and ZIF-8. The prepared ZIF-8 shows a good crystallinity with 

sodalite (SOD) while the addition of GRHA into ZIF-8 did not alter the crystallinity of ZIF-8 which has 

been confirmed using XRD. GRHA exhibits amorphous structure because of the presence of multilayer 

graphene. However, Raman shift shows that GRHA has a relatively high degree of graphitization (ID/IG 

= 0.45). The introduction of GRHA into the composite greatly enhanced the BETSSA which is 1632.10 

m2/g. Therefore, these findings suggest that GRHA/ZIF-8 can be a potential material for hydrogen 

storage since it has an enhanced physicochemical properties. 
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