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Abstract: The Soil Conservation Service curve number (SCS-CN) method is one of the most popular
methods used to compute runoff amount due to its few input parameters. However, recent studies
challenged the inconsistent runoff results obtained by the method which set the initial abstraction
ratio λ as 0.20. This paper developed a watershed-specific SCS-CN calibration method using
non-parametric inferential statistics with rainfall–runoff data pairs. The proposed method first
analyzed the data and generated confidence intervals to determine the optimum values for SCS-CN
model calibration. Subsequently, the runoff depth and curve number were calculated. The proposed
method outperformed the runoff prediction accuracy of the asymptotic curve number fitting method,
linear regression model and the conventional SCS-CN model with the highest Nash–Sutcliffe index
value of 0.825, the lowest residual sum of squares value of 133.04 and the lowest prediction error.
It reduced the residual sum of squares by 66% and the model prediction errors by 96% when compared
to the conventional SCS-CN model. The estimated curve number was 72.28, with the confidence
interval ranging from 62.06 to 78.00 at a 0.01 confidence interval level for the Wangjiaqiao watershed
in China.

Keywords: SCS; initial abstraction ratio; curve number; bootstrap; rainfall–runoff model

1. Introduction

Accurate direct surface runoff is essential for water resources’ planning and development to
reduce the occurrence of sedimentation and flooding at their downstream areas [1–3]. The simpler
hydrological model under the law of parsimony with the least required input parameters and superior
predictive model performance is preferable by many researchers [4–10].

Despite the existence of many rainfall–runoff models, the Soil Conservation Service curve number
(SCS-CN) model proposed by the SCS National Engineering Handbook (SCS NEH) [11] is widely used
in hydrological design [12,13]. The parameters of curve number (CN) and initial abstraction ratio (λ)
are important in the SCS-CN method. The initial abstraction ratio (λ) plays a vital role in SCS-CN
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model in order to obtain an accurate runoff estimation [14]. Since 1954, λ was proposed by SCS to be
0.20. Equation (1) measures the runoff depth (Q) based on λ, the maximum potential water retention
amount (S) and the rainfall depth (P). Throughout this paper, P, S and Q are measured in the unit of
millimeters unless stated otherwise.

Q =
(P− Ia)2

P− Ia + S
; P > Ia, (1)

where Ia is the initial abstraction in the unit of millimeters computed using Equation (2).

Ia = λS. (2)

By substituting λ = 0.20 as proposed by SCS, Equation (3) is obtained.

Q =
(P− 0.2S)2

P + 0.8S
. (3)

On the other hand, the parameter CN is a transformation of S (where λ value must be 0.20), as
shown in Equation (4).

CN = CN0.20 =
1000

10 +
S

25.4

. (4)

However, recent studies concluded that λ should not be a fixed value. Furthermore, some
researchers also reported that λ value variation away from the proposed 0.20 value and lower than
0.20 was able to achieve better estimation of runoff prediction results in their studies [15–22]. Based on
the median values of natural data for 307 watersheds, a group of researchers from the United States of
America suggested a rounded value of λ = 0.05 to produce a better estimation of runoff depth [18].
Similarly, a group of researchers adopted the λ value of 0.05 for their research study at the Wangjiaqiao
watershed in China [13].

The satellite imaging technique and geographic information system (GIS) were incorporated with
the conventional SCS-CN method for studies but no attempt was reported to calibrate the primary
SCS-CN rainfall–runoff framework with statistics in recent years. Recently, two groups of researchers
developed a globally gridded CN dataset at 250 m spatial resolution [23,24]. However, the 250 m
resolution dataset only represents general patterns of soil runoff potential appropriate for regional to
global-scale analyses and may not capture the local variance suitable for fine-scale applications. Users
need to check local conditions and runoff trends whenever available in their area of interest.

Since the tabulated NEH CN handbook [25] was based on the proposal that λ = 0.20, when λ

changed, the CN value was altered and could not be determined or referred from the NEH handbook
directly. Based on the study results of a group of researchers from the United States of America,
λ = 0.05 was reported as the best value to represent watersheds in the United States of America and
they proposed Equation (5) for runoff prediction while the S correlation equation between S0.05 and
S0.20, as shown in Equation (6) (in inches), was used to transform the S0.05 value back to S0.20 in order
to calculate CN values in their studies [18]. Without the correlation between S0.05 and S0.20, the direct
substitution of Sλ (i.e., S0.05) into Equation (4) yields CNλ (the conjugate CN), which is totally different
from the conventional CN (denoted as CN0.20, where λ = 0.20) value [18].

Q =
(P− 0.05S0.05)

2

P + 0.95S0.05
; P > 0.05S0.05 (5)

S0.05 = 1.33(S0.20)
1.15 (6)

CN0.05 =
100

1.879[(100/CN0.20)− 1]1.15 + 1
. (7)
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Since λ varies from location to location, a watershed-specific SCS-CN calibration method was
proposed by using non-parametric inferential statistics based on rainfall and runoff data pairs. In this
study, λ was no longer fixed at 0.20. This paper presents the use of inferential statistics to calibrate the
primary SCS-CN rainfall–runoff model. To measure the effectiveness of the watershed-specific SCS-CN
calibration method, the dataset from a past research in China was used to derive a watershed-specific
SCS-CN rainfall–runoff model, a watershed-specific S correlation equation, λ value and the CN
of Wangjiaqiao watershed to further improve their runoff prediction accuracy [13]. A calibrated,
watershed-specific SCS-CN rainfall–runoff model was developed while an equation was derived to
correct the runoff prediction of the conventional SCS-CN model. To date, no other published work has
incorporated inferential statistics to calibrate the SCS-CN model.

2. The Proposed Calibrated Watershed-Specific SCS-CN Method

According to SCS, the initial abstraction (Ia) must be smaller than the smallest rainfall amount in
the dataset which initiated runoff [25]. Furthermore, SCS constraint also stated that λ value must be in
the range of [0, 1] and S must be a positive integer [25]. Based on Equation (3), the λ value cannot be a
negative integer and S should be larger than Ia in order to meet its stated constraints.

The non-parametric inferential statistics of the bias corrected and accelerated (BCa) bootstrapping
method [26–28] was conducted on the given dataset with 2000 random samples (with replacement) to
make a statistically significant selection of key parameters—λ and S—with 99% confidence interval (CI)
in order to calibrate Equation (1) [26,29]. The data distribution free, BCa bootstrapping technique was
used in this study because it is robust and able to produce confidence intervals for statistical assessment.

The selection of mean or median λ and S is an universal dilemma in the hydrological field among
researchers [18,30]. IBM statistical software SPSS (version 18.0) was used in this study, the normality
test was conducted in SPSS to determine whether the optimum λ and S values should have been
chosen from the mean or median confidence intervals. If a given dataset has less than 2000 samples,
the Shapiro–Wilk test is suggested rather than the Kolmogorov–Smirnov test. This paper used a dataset
which was less than 2000 samples, and therefore, the Shapiro–Wilk test was used. If the p value of
the Shapiro–Wilk test is greater than 0.05, then the dataset is considered normally distributed [31].
As such, parameter optimization process should be inferred from the mean CI.

The supervised, non-linear genetic optimization algorithm was used in this study to search for
the optimum λ and S values. The optimization algorithm created a population size of 2000, and 2000
random seeds with a mutation rate of 0.075 to converge towards an optimal solution within BCa 99%
CI at a small error margin of 0.001 mm to search for the optimum λ and S value within the selected
confidence interval range while the least square fitting algorithm minimized the residual sum of
squares (RSS) between the predicted runoff and the values of the entire dataset.

As proposed by SCS, the S value was calculated from CN equation, as shown in Equation (4),
whereas the CN value was chosen from the NEH handbook [25]. When λ is no longer equal to 0.20,
a different λ value will yield a different S value, denoted as Sλ. In this study, Equation (1) was
rearranged to illustrate a way to solve for Sλ, as shown in Equation (8):

Sλ =
[P− (λ− 1)Q

2λ
]−

√
PQ− P2 + [P− (λ− 1)Q

2λ
]2

λ

Let : A = [P− (λ− 1)Q
2λ

]

Sλ =
A−

√
PQ− P2 + A2

λ
. (8)

Equation (8) is known as the general S equation denoted by Sλ. For the conventional SCS-CN
model where λ = 0.20, S0.20 can be calculated with Equation (8) according to the corresponding rainfall
and runoff data pair. Since the optimum λ value of the calibrated model might be different from



Water 2020, 12, 60 4 of 14

λ = 0.20, a statistically significant S correlation is needed to correlate the Sλ to S0.20 [18] in order to
determine the equivalent S0.20 value for the substitution back to Equation (4) to derive an equivalent
CN0.20 used by SCS practitioners. Without the S correlation equation, the CN value derived from any
λ value which is not equal to 0.20 is known as the conjugate curve number denoted as CNλ [18].

The watershed-specific rainfall–runoff model and the conventional SCS-CN model were derived
from Equation (1); thus, the runoff prediction differences (Qv) between two models can be modeled
according to rainfall depth values in order to adjust the runoff prediction results of Equation (3) with a
corrected equation.

The proposed method consists of two main steps: (1) Analyze the rainfall and runoff data pairs
using the IBM statistical software SPSS (version 18.0) by generating confidence intervals for both mean
and median values of derived λ and S; subsequently, perform a normality test to decide whether the
confidence interval of mean or median value is to be used for optimization. (2) Optimize from the
confidence interval range. In short, given rainfall–runoff data pairs (Pi, Qi), Iai , Si and λi for i > 0,
the proposed watershed-specific SCS-CN calibration method consists of the following steps:

1. Perform bootstrap, BCa procedure and normality test in SPSS (version 18.0 or an equivalent
statistics software) for (λi, Si).

2. Check the normality test results of Si to see whether it is normally distributed or not:

(a) If yes, refer to the mean BCa confidence interval for S optimization.
(b) Otherwise, refer to the median BCa confidence interval for S optimization.

3. Check the normality test results of λi to see whether it is normally distributed or not:

(a) If yes, refer to the mean BCa confidence interval for λ optimization.
(b) Otherwise, refer to the median BCa confidence interval for λ optimization.

4. Substitute the λoptimum and Soptimum value into Equation (1) to form a calibrated SCS runoff
model.

5. Given (Pi, Qi) and λoptimum, compute Sλi with Equation (8).
6. Given (Pi, Qi) and λ0.2, compute S0.2i with Equation (8).
7. Correlate S0.2i and Sλi to form a S correlation equation.
8. Substitute the S correlation equation into Equation (4) to derive CN0.2.

Remark 1. The Ia values, S values and Ia/S values used in this paper came from a study in China [13]. The Ia

values used were estimated based on the comparison of the hydrograph with rainfall graph, and the methodology
to derive the Ia and S value for each event is presented in the study. IBM SPSS version 18.0 was used to conduct
all statistical analyses in this paper.

3. Application to Wangjiaqiao Watershed in the Three Gorges Area, China

3.1. Study Site and Rainfall-Runoff Dataset

Figure 1 shows the study area of the Wangjiaqiao watershed which lies in Zigui County of Hubei
Province, China. It is located at latitude 31◦5′ N and 31◦9′ N to longitude 110◦40′ N and 110◦43′ N.
The total area of this study site is 1670 hectares and it is about 50 km northwest of the Three-Gorges
Dam. Twenty nine rainfall–runoff data pairs were collected from 1994 to 1996 as shown in Table 1 [13].
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Figure 1. Location of study area in Wangjiaqiao watershed, China [13].

Table 1. Rainfall-runoff data of Wangjiaqiao watershed [13].

No. Storm Rainfall Direct Runoff Initial Abstraction Retention Ratio
Event P (mm) Q (mm) Ia (mm) S (mm) Ia/S

1 03/05/1994 11.2 0.36 4.6 114.1 0.040
2 14/06/1995 11.9 0.16 6.5 176.9 0.037
3 24/04/1994 14.2 0.23 8.6 130.7 0.066
4 12/05/1995 19.0 0.01 16.8 481.8 0.032
5 16/04/1995 19.8 0.47 9.9 200.0 0.050
6 10/09/1995 22.0 0.03 18.1 503.1 0.036
7 01/06/1995 23.6 0.29 14.8 258.7 0.057
8 17/10/1995 24.1 0.48 13.6 218.0 0.062
9 09/05/1994 26.5 0.65 13.1 262.8 0.050

10 19/05/1995 27.1 1.78 10.0 146.9 0.068
11 19/06/1996 28.3 2.18 13.4 86.9 0.154
12 20/06/1995 30.8 4.02 8.3 103.4 0.080
13 29/07/1996 31.7 0.92 10.7 458.3 0.023
14 23/06/1996 32.3 1.27 6.1 514.7 0.012
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Table 1. Cont.

No. Storm Rainfall Direct Runoff Initial Abstraction Retention Ratio
Event P (mm) Q (mm) Ia (mm) S (mm) Ia/S

15 28/06/1996 32.4 1.75 14.6 163.3 0.089
16 14/05/1996 36.1 3.45 8.9 187.2 0.048
17 18/04/1994 38.1 3.72 10.4 178.6 0.058
18 19/10/1995 41.2 1.75 8.6 574.0 0.015
19 26/08/1994 48.1 1.08 19.0 755.2 0.025
20 04/06/1994 49.7 2.88 9.3 525.7 0.018
21 04/11/1996 49.8 4.15 6.7 405.1 0.017
22 07/07/1995 51.9 11.25 12.1 100.9 0.120
23 02/07/1996 54.0 2.86 7.4 714.0 0.010
24 02/05/1996 57.7 5.34 21.6 207.8 0.104
25 03/06/1996 62.1 3.23 18.5 544.6 0.034
26 07/06/1994 68.6 11.87 11.3 219.2 0.052
27 09/04/1994 73.7 9.94 14.1 297.6 0.047
28 18/09/1996 82.3 15.70 16.7 208.6 0.082
29 03/07/1996 85.9 21.31 7.8 208.1 0.037

3.2. Runoff Model Assessment

To measure the effectiveness of the proposed method, the Nash–Sutcliffe index (E), the model
residual sum of square errors (RSS) and the overall model prediction error (BIAS) were computed
using Equation (9)–(11) respectively.

E = 1− RSS
∑n

i=1(Qpredicted −Qmean)2 (9)

RSS =
n

∑
i=1

(Qpredicted −Qobserved)
2 (10)

BIAS =
∑n

i=1(Qpredicted −Qobserverd)

n
, (11)

where n is the total rainfall–runoff events of this study.
RSS shows the model residual or prediction error. Thus, a predictive model with a lower RSS

value is able to predict runoff amount better. Meanwhile, BIAS shows the overall model prediction
error by the summation of a model residual (prediction error). A predictive model with zero BIAS
value is able to achieve perfect runoff prediction results, whereas positive BIAS value indicates
the model tendency to over predict runoff amount and vice versa. Lastly, E index value is used to
determine the model prediction efficiency of a model. E index ranges from −∞ to 1.0, where 1.0
implies a perfectly predictive model [32]. E index values between 0 and 1 are generally viewed as
acceptable levels of performance; however, when E < 0, the use of the mean runoff value observed
can even predict the dataset better than the predictive model [33].

3.3. Results and Discussion

3.3.1. Inferential Statistics Assessment to Obtain Optimum λ and S

In total, 29 different pairs of λ and S values were derived from the rainfall–runoff data pairs of
Wangjiaqiao watershed. At α = 0.01 level, the proposed method searched for the optimum value
within the CI range of mean and median λ values. Finally, an optimized pair of S and λ values was
used to represent the watershed. The descriptive statistics of λ and S values were tabulated in Table 2.

Other than referring to the skewness and kurtosis values for λ and S dataset, the median value will
be a better collective representation for λ and S dataset to represent the watershed, as the Shapiro–Wilk
normality test also concluded that p < 0.05 for both λ and S dataset. As the data distribution for
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both λ and S dataset are not normally distributed by nature, the best collective λ and S values were
optimized within the median confidence interval ranges of λ and S at α = 0.01 level to minimize the
RSS between the model predicted runoff amount and its observed values for the Wangjiaqiao dataset.

The optimum λ value was 0.043 while 260.081 mm was the optimum S value (denoted as: S0.043).
The product of the optimum S and λ value yield the initial abstraction (Ia) of 11.19 mm which was smaller
than the smallest rainfall amount in the dataset from [13]. It fulfilled the SCS constraints, whereby the
Ia amount must be met before any runoff process. Thus, based on the proposed watershed-specific
SCS-CN calibration method, the runoff depth (Q) for the Wangjiaqiao watershed in China can be
computed using Equation (12).

Q0.043 =
(P− 11.19)2

P + 248.891
. (12)

Based on Table 2, neither the mean nor the median BCa 99% λ CI includes the value of 0.20,
and therefore, a λ value of 0.20 is not even statistically significant for the dataset of [13] at α = 0.01
level. Furthermore, the standard deviation for λ at BCa 99% level is 0.034 with 77.14% λ fluctuation
percentage between its lower and upper CI ranges to show that λ cannot be a constant but a variable
due to its high fluctuation nature.

Table 2. Descriptive Statistical Results of λ and S at Bias Corrected and Accelerated (BCa) 99% Confidence Interval.

Wangjiaqiao Descriptive Statistics
BCa 99%

Descriptive Statistics
BCa 99%

Datasets of λ
Confidence Interval

of S
Confidence Interval

Lower Upper Lower Upper

Mean 0.053 0.069 0.384 308.477 230.413 395.527
Median 0.048 0.035 0.062 219.188 178.561 458.348

Skewness 1.251 0.268 1.846 0.867 −0.160 2.275
Kurtosis 1.884 −0.786 4.830 −0.389 −1.833 6.030

Std. Deviation 0.034 0.021 0.044 192.843 137.400 232.351

3.3.2. Watershed-Specific S Correlation Equation and CN for Wangjiaqiao Watershed in China

In the study of [13], they referred to the S correlation equation mapped by [18] where the median
λ value of 0.05 was reported as the better collective representation for US watersheds. According
to [18], a S correlation equation is required to convert the conjugate CN value when λ is no longer
equal to 0.20. A different λ value will lead to different corresponding S value and the CN value will
change accordingly. This study used Equation (8) to substitute λ = 0.043 and 0.20 with respective
rainfall–runoff data pairs to calculate the corresponding S0.043 and S0.20 values in order to determine the
S correlation equation between S0.043 and S0.20 values for Wangjiaqiao watershed in SPSS. Equation (6)
should not be adopted as it was derived (in inches) to reflect watershed conditions of the United States
of America [18].

SCS practitioner(s) will choose the CN value from the NEH handbook and calculate the S value
with Equation (4) which was proposed by SCS under the hypothesis that λ = 0.20. This study used
the reverse methodology to convert the S0.043 value into an equivalent S0.20 value through a mapped
watershed-specific S correlation equation in order to determine the watershed-specific CN (CN0.20).
SPSS mapped the best S correlation equation between S0.043 and S0.20, as shown in Equation (13).

S0.2 = (S0.043)
0.823. (13)

The correlation in Equation (13) has a lower standard error of 0.228 mm; the adjusted R2

(Adj R2) is equal to 0.998; and its p value is less than 0.001. As the optimum S0.043 = 260.081 mm,
the equivalent S0.20 value can be found by using Equation (13) with 97.39 mm, leading to the calculated
watershed-specific CN value of 72.28 with Equation (4) for Wangjiaqiao watershed in China.
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3.3.3. Asymptotic CN of Wangjiaqiao Watershed

Many studies concluded that the CN value could be derived with rainfall–runoff data pairs [34–36].
In 1993, the asymptotic CN fitting method (AFM) was introduced to determine the CN of a watershed
with rainfall–runoff data pairs only [34]. At the WangJiaoQiao watershed, the standard CN behavior
was detected with AFM, whereas CN stabilized at 65.10 (see Figure 2; hence, the equivalent S0.2 value
of the asymptotic CN can be calculated with Equation (4) as 136.17 mm).

Figure 2. Standard behavior pattern, CNinf = 65 for Wangjiaqiao watershed.

Furthermore, the Ia value can be determined, as it is the multiplication of λ and S values, and
therefore, the Ia value we got was 27.24 mm. However, ten out of twenty nine (34.48%) rainfall events
observed in Table 1 are smaller than the calculated Ia value. As such, AFM derived an Ia value which
was in conflict with the aforementioned SCS constraint, one that meant there would be no runoff
generated from any rainfall amount below the Ia value.

3.3.4. Residual Modeling and the Corrected Equation

Some researchers developed new models or modified the existing SCS-CN rainfall–runoff model
by adding more parameters to improve surface runoff prediction accuracy [14,16,22,37–44]. However,
those modified rainfall–runoff models could not solve the problem faced by SCS practitioners or any
software that has already integrated the conventional SCS-CN model or embedded λ = 0.20 into its
software algorithm.

In order to correct the runoff prediction variance (Qv) between the conventional SCS-CN model
and the new calibrated SCS-CN model to benefit SCS practitioners in their current practice, residual
analyses of runoff predictive model were conducted between the two models to form a corrected
equation, as shown in Equation (14). The Qv was mapped with several non-linear regression models
in SPSS according to rainfall values.

Qv = −0.00003P3 + 0.007P2 − 0.322P + 3.511, (14)

where Qv is the runoff prediction difference (mm) obtained by computing Equations (3)–(12) and P is
the rainfall depth (mm).

Equation (14) shows the Qv between Equations (3) and (12). Positive Qv indicates that Equation (3)
predicted a larger runoff amount compared to Equation (12). Qv can be plotted in order to visualize
that Equation (3) produced inconsistent runoff prediction results, where it over predicted runoff when
rainfall was less than 16 mm and more than 36 mm (see Figure 3) but under predicted the runoff
amount when rainfall depth was between 16 mm and 36 mm. Equation (14) achieved an Adj R2 near to
1.0 and low standard error of the estimate (0.053 mm) with statistical significance (p < 0.001) to correct
and improve the runoff prediction results of Equation (3). As such, Equation (14) can be amended to
Equation (3) to improve the runoff prediction accuracy of Equation (3), as shown in Equation (15).
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Q =
(P− 0.2S)2

P + 0.8S
− (−0.00003P3 + 0.007P2 − 0.322P + 3.511), (15)

where P > 0.2S, else Q = 0.

Figure 3. Runoff difference between the proposed calibrated model and the conventional SCS-CN model.

Equation (15) adjusted and improved the runoff prediction results of Equation (3). RSS of
Equation (3) was reduced by 66%; the over prediction tendency of the model was corrected by 96%;
and achieved proximate runoff prediction results as the new calibrated SCS-CN model, while the E
index was improved by 71% to 0.826. Without model calibration, the conventional SCS-CN model
over-predicted runoff amount by almost 155,000 m3 at the rainfall depth of 85.90 mm when compared
to the newly calibrated SCS-CN model at the 1670 ha Wangjiaqiao watershed in China. The runoff
over prediction risk would be even worse toward high rainfall intensities. On the other hand, it also
under-predicted runoff amount up to 8000 m3 at the rainfall depth of 26.5 mm. This showed that the
conventional SCS-CN model was not only statistically insignificant at α = 0.01 level, but produced
inconsistent runoff prediction results at different rainfall depths.

3.3.5. Comparison of Runoff Prediction Models

The law of parsimony favors a simple model with less fitting parameters. As such, this study
explored the possibility of using a linear regressed rainfall–runoff model to quantify the runoff behavior
at the Wangjiaqiao watershed. Past researchers proposed that the slope of a linear fitting equation
could represent the total impervious area of a watershed while the fitting constant was regarded
as the depression loss [45]. In this study, SPSS fitted the best linear regressed rainfall–runoff model
for Wangjiaqiao watershed as: Q = 0.214P − 4.623 with an Adj R2 = 0.715 and standard error of
estimate was equal to 2.779 mm. Both fitting slope and constant parameter were statistically significant
(p < 0.001) but the model produced five out of twenty nine (17.2%) negative runoff prediction results.
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λ’s confidence interval in Table 2 implies that λ value cannot be 0.20 and a constant value at
Wangjiaqiao watershed in China. As a result, the conventional SCS-CN model becomes invalid and
not statistically significant. When the λ value is fixed at 0.20, the optimized S0.20 = 100.8 mm and Ia

value can be calculated as 20.16 mm, but this Ia value violated the SCS constraint, as 17.24% of rainfall
data pairs from [13] were less than the Ia value. Thus, the conventional SCS-CN model faced the same
problem as the AFM and the linear regression model. Moreover, the conventional SCS-CN model had
the lowest E index; highest RSS; and BIAS when compared to the AFM, the linear regression model
and the newly calibrated watershed-specific SCS-CN model. The statistics of five runoff predictive
models were tabulated in Table 3.

Table 3. Descriptive statistics of five runoff predictive models

Model Parameters Calibrated Conventional Corrected Linear
and AFM Model SCS-CN Model SCS-CN Model SCS-CN Model Regression

Statistics Equation (12) Equation (3) Equation (15) Model

p value - <0.001 Not Significant Adjusted <0.001
λ 0.200 0.043 0.200 0.200 -

S (mm) 136.19 260.08 100.80 - -
Ia (mm) 27.238 11.190 20.16 - 4.623

E 0.799 0.825 0.482 0.826 0.725
RSS 152.251 133.044 393.126 131.960 208.462

BIAS −0.624 0.056 1.586 0.055 −0.008
CN0.2 65.096 72.284 71.590 - -

Residual Mean −0.624 0.056 n/a 0.055 −0.008
BCa 99% CI

Range of [−1.631, 0.283] [−0.898, 0.961] n/a [−0.896, 0.970] [−1.225, 1.124]
Mean Residual

Residual Median n/a n/a 0.140 n/a n/a
BCa 99% CI

Range of n/a n/a [−0.420, 3.850] n/a n/a
Median Residual

Standard
Deviation of 2.244 2.179 3.381 2.171 2.728
Model error

Variance (Residual) 5.035 4.748 11.429 4.715 7.445
Range 11.350 10.844 12.740 10.770 12.987
p value

of Shapiro-Wilk 0.197 0.111 0.012 0.121 0.597
Test

Residual analyses were conducted by using SPSS to measure the runoff prediction error of
every runoff predictive model. The model with the smallest residual confidence interval range, lowest
standard deviation error and variance was to be the best runoff predictive model of this study. The SPSS
normality test showed that the significant value of the Shapiro–Wilk test was more than 0.05 for the
AFM model, the newly calibrated watershed-specific SCS-CN model, the corrected SCS-CN model
and the linear regression model; thus, their mean residual values were referred to for the accuracy
comparison of the predictive model. On the other hand, the p value of the Shapiro–Wilk test for the
conventional SCS-CN model was less than 0.05; hence, its median residual values were used as the
benchmark for its model accuracy.

The mean residual value of the newly calibrated, watershed-specific SCS-CN model was among
the lowest (0.056 mm) and nearest to zero, while its 99% BCa confidence interval range of mean
residuals spanned across a small range when compared to other models. In addition, the newly
calibrated, watershed-specific SCS-CN model had a low residual variance and standard deviation
which indicated that the newly calibrated runoff predictive model had the ability to achieve a runoff
prediction with low error. As a result, the newly calibrated watershed-specific SCS-CN model became
a suitable runoff predictive model for the twenty nine data pairs at the Wangjiaqiao watershed in this
study. On the other hand, the corrected SCS-CN model also managed to correct runoff prediction errors
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of the conventional SCS-CN model and achieved proximate runoff prediction results as the newly
calibrated watershed-specific SCS-CN model, which proves that the presented residual modeling
technique was effective at transforming Equation (3) into a better rainfall–runoff model.

Without model calibration, the conventional SCS-CN model over predicted runoff volume
significantly from rainfall depths of 40 mm onward at the 1670 ha Wangjiaqiao watershed in China (see
Figure 4). Through Equation (14), it is possible to quantify and model the runoff over prediction volume
according to its corresponding rainfall depths. SPSS mapped that Qv (m3) = 21.01P2 + 642.62P− 54, 520
was able to quantify the runoff over prediction volume from the conventional SCS-CN model with and
an Adj R2 near to 1.0 and low standard error of 712.92 m3 (p < 0.001).

Figure 4. Runoff volumetric differences between the proposed, calibrated SCS-CN model and the
conventional SCS-CN model.

4. Conclusions

A new watershed-specific SCS-CN calibration method was proposed to identify the optimum λ

and S values, and derive CN with the use of non-parametric inferential statistics, the rainfall-runoff
data pairs and the supervised non-linear numerical optimization technique. The proposed model was
applied to the Wangjiaqiao watershed in China. Inferential statistics showed that the conventional
SCS-CN model was not statistically significant at α = 0.01 level, and therefore, it was not applicable to
model the runoff conditions of the Wangjiaqiao watershed in China. The proposed model identified
the optimum median λ of 0.043 (with the 99% confidence interval ranging from 0.035 to 0.062) as
the best collective λ for the Wangjiaqiao watershed. A watershed-specific S correlation equation was
mapped in this study to show that the CN value of the Wangjiaqiao watershed can be derived directly
without referring to the NEH handbook. The estimated CN of Wangjiaqiao watershed in China was
72.28 with a 99% confidence interval ranging from 62.06 to 78.0.

The newly calibrated watershed-specific SCS-CN model improved the previous study results: the
E index increased by 7.4%, the BIAS of predictive model was reduced by 93.8% and model’s RSS was
lowered by 24.4%. These improvements were achieved with a λ of 0.043 instead of rounding it to 0.050.
The proposed model also outperformed the AFM model, the conventional SCS-CN model and the
linear regression model to predict runoff amount at the Wangjiaqiao watershed. The proposed model
had the lowest BIAS and RSS, and the highest E index when compared to those runoff predictive
models. On the other hand, the linear regression model had the second highest model inaccuracy
after the conventional SCS-CN model, and both models produced negative runoff prediction results
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that were unable to yield a meaningful hydrological interpretation to predict surface runoff at the
Wangjiaqiao watershed. Both models were also unable to produce positive runoff prediction results
for rainfall depths less than 20 mm.

A runoff corrected equation was formulated through the proposed residual modeling technique
under this study. The equation managed to correct runoff inconsistencies of the conventional SCS-CN
model and improved its runoff prediction accuracy. The S correlation equation from other study cannot
be adopted as it reflects specific watershed conditions. It must be derived with watershed-specific λ

and rainfall–runoff data pairs in order to convert the CNλ into an equivalent CN0.20. This study also
found that the rounding of λ and CN values will induce the runoff prediction errors. As a result, CN
with at least two decimal places is recommended to SCS practitioners for their future studies.

Based on the proposed SCS-CN calibration method, Equation (12) is recommended for the runoff
prediction of the dataset from [13] at the Wangjiaqiao watershed in the Three Gorges Area. When a
new rainfall–runoff dataset becomes available, SCS practitioners should re-derive the calibrated SCS
runoff model again with the proposed methodology.

Author Contributions: conceptualization and methodology, L.L.; software, W.-S.Y. and L.L.; validation, Z.Y.;
formal analysis, L.L.; investigation, W.L.T., M.F.C. and Z.Y.; resources, L.L.; writing—original draft preparation,
L.L.; writing—review and editing, W.-S.Y., L.L. and J.L.L.; visualization, L.L. and J.L.L.; supervision, L.L. and Z.Y.;
project administration, L.L.; funding acquisition, L.L. and Z.Y. All authors have read and agreed to the published
version of the manuscript.

Funding: The authors would like to acknowledge the financial support received from the Universiti Tunku Abdul
Rahman under the research grant:/RMC/UTARRF/2016-C2/L13.

Acknowledgments: The authors also appreciate the guidance from Richard H. Hawkins (University of Arizona,
USA) and Wen Jia Tan (Universiti Tunku Abdul Rahman) to assist in some analyses.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

SCS-CN Soil Conservation Service Curve Number
NEH National Engineering Handbook
CN Curve Number
λ Initial Abstraction Ratio
Q Runoff Depth
S Maximum potential water retention amount
P The rainfall depth
BCa Bias corrected and accelerated
Sλ S value of different λ

CNλ Conjugate Curve Number
Qv Runoff prediction differences
E Nash-Sutcliffe index
RSS Model residual sum of square errors
BIAS Overall model prediction error
CI Confidence Interval
SPSS IBM statistical software SPSS
Adj R2 Adjusted R2

AFM Asymptotic CN fitting method
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