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ABSTRACT 

This research aims to develop the dynamic model of an 

Automotive Air Conditioning system using conventional and 

intelligent techniques. The research focused to achieve the 

optimal model that can effectively capture the behavior of the 

system. Linear and Non-Linear Autoregressive with Exogenous 

input (ARX and NARX) and Linear Autoregressive Moving 

Average with Exogenous inputs (ARMAX) models were used to 

capture the dynamics behavior of the system using system 

identification technique utilizing experimentally acquired input-

output data. The system identifications were conducted using 

parametric and conventional method namely Recursive Least 

Squares (RLS) and Recursive Extended Least Squares (RELS), 

and nonparametric method using Intelligent algorithm of 

Multilayer Perceptron Neural Network.  The comparative 

investigations have proven the superiority of the ARMAX model 

over the ARX and NARX model in term of prediction 

performance, whiting the disturbance as well as computational 

load for training. The mean square error are 2.7341×10-4, 

1.9017×10-5 and 5.0257×10-6, for ARX, NARX, and ARMAX 

model respectively.  
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1 INTRODUCTION 

Heating Ventilation and Air Conditioning (HVAC) system 

vehicle types were invented to present a thermal comfort zone 

for the passengers inside the vehicle, but the problem faced by 

the researchers is excessive energy consumption. 

Based on an investigation led by Laboratory of National 

Renewable Energy [1], around 26 billion liters of fuel per year is 

being consumed by the Automobile Air Conditioning systems 

(AAC) in USA, which equalize 5.5% of the whole transportation 

fuel consumption in the USA. AAC systems are designed to be 

controlled based on identified model, by regulating the flow of 

speed using a valve or controlling the airflow by a fan. 

Various modelling and simulation approaches are now available 

to simulate the dynamics of the HVAC system with alternating 

levels of complication and ability. Majority of these methods 

require meaningful assumptions and idealizations with 

facilitation to become simpler to be applied, but this simplicity 

restricts their ability to realistically model and control the 

dynamic behavior of the system. On the other hand, some 

techniques need highly specific skill and experience to be 

implemented, as these two qualities are commonly not one of the 

usual experiences of Air Conditioning control plans set. 

The process to go from an acquired data into a mathematical 

representation is necessary for studying system behavior due to 

the insufficiency of enhancing and controlling it with lack of 

earlier knowledges, this procedure was called system 

identification (SI), thereafter, the goal is to create adequate 

models from measured input and output data [2]. The necessity 

of system modelling led to many research movements in SI area 

for this past three decades. SI have been introduced and 

developed, where dozens of techniques and methods become 

basic tools in signal processing and computational.  

The term system identification coined by Lotfi Zadeh in 1962 is 

a procedure to obtain a mathematical description of a system [3]. 

SI can be classified based on the prior knowledge of the system 

into; firstly, White Box Identification at which the model is 

completely known and it is possible to construct it entirely from 

the physical insight and earlier knowledge.  Secondly, Grey Box 

Structures, where some physical insight is available, but many 

parameters need to be determined from observed data [4]. 
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Finally, Black Box Identification which is the most common one, 

the model structure parameters completely unknown, and no 

physical insight to be implemented, but the model selected is one 

of the models that have high flexibility, so the parameters are 

only calculated from the input and output data [5]. 

For the past two decades, increased attention among researchers 

have led to utilizing conventional and intelligent algorithms for 

the modelling of HVAC system, white, grey and black box 

based numerous methods were implemented, Zajic et al. [6] 

developed grey box models for the electronic and thermostatic 

expansion valve, Hariharan et al. [7], adopted ARX based grey 

box model to simulate the behavior of an evaporator and 

compressor. A cooling coil and power consumption of a chiller 

system were modeled by Jin et al. [8] and Berardino et al. [9] 

respectively. 

Artificial intelligent techniques were studied as well, where, Li 

et al. [10] employed Artificial Neural Networks (ANN) 

technique to model an air conditioning system, direct expansion 

types, while an AAC system was modelled by Ng et al. [11] 

using NARX based ANN model. Franco et al. [12] applied a 

Neuro-Fuzzy model for modelling and identifying the behavior 

of a non-linear dynamic condensing, evaporating and propylene 

glycol temperatures of a pilot refrigeration system. 

2 MODELLING AND SIMULATING THE 

AAC SYSTEM 

A. RELS based ARMAX model identification: 

The mathematical description for the generalized structure of 

statistical black-box models in a simple correlation between 

input 𝒖(𝒕), output 𝒚(𝒕) and noise disturbance 𝒆(𝒕), is expressed 

as follows: 

𝑨(𝒒−𝟏)𝒚(𝒕) =
𝑩(𝒒−𝟏)

𝑭(𝒒−𝟏)
𝒖(𝒕) +

𝑪(𝒒−𝟏)

𝑫(𝒒−𝟏)
𝒆(𝒕)                  (1) 

ARMAX model contains A, B, and C polynomial in its general 

formula equation as follows:  

𝑦(𝑡) =
𝐵(𝑞−1)

𝐴(𝑞−1)
𝑢(𝑡) +

𝐶(𝑞−1)

𝐴(𝑞−1)
𝑒(𝑡)                        (2) 

where, 𝑨(𝒒−𝟏), 𝑩(𝒒−𝟏) and 𝑪(𝒒−𝟏) are the model polynomials 

which are given as: 

𝐴(𝑞−1) = 1 + 𝑎1𝑞
−1 + 𝑎2𝑞

−2 + ⋯+ 𝑎𝑛𝑎𝑞−𝑛𝑎  

𝐵(𝑞−1) = 𝑏0 + 𝑏1𝑞
−1 + 𝑏2𝑞

−2 + ⋯+ 𝑏𝑛𝑏𝑞
−𝑛𝑏  

𝐶(𝑞−1) = 1 + 𝑐1𝑞
−1 + 𝑐2𝑞

−2 + ⋯+ 𝑐𝑛𝑐𝑞
−𝑛𝑐.              (3) 

while, (𝒒−𝟏)  is the back shift operator,  𝒏𝒂 ,𝒏𝒃  and 𝒏𝒄 are the 

polynomials 𝑨(𝒒−𝟏), 𝑩(𝒒−𝟏) and 𝑪(𝒒−𝟏) order respectively. 

thus, (2) can be written in the following forms: 

𝐴(𝑞−1)𝑦(𝑡) = 𝐵(𝑞−1)𝑢(𝑡) + 𝐶(𝑞−1)𝑒(𝑡)                 (4) 

 (1 + 𝑎1𝑞
−1 + ⋯)[𝑦(𝑡)] = (𝑏0 + 𝑏1𝑞

−1 + ⋯ )[𝑢(𝑡)] +
(1 + 𝑐1𝑞

−1 + ⋯)[𝑒(𝑡)]                                 (5) 

one step ahead predicted (OSA) output can be estimated based 

on the following relation: 

𝑌̂(𝑡) =  [−𝑦(𝑡 − 1), … ,−𝑦(𝑡 − 𝑛𝑎); 𝑢(𝑡 − 1), … , 𝑢(𝑡 −

𝑛𝑏); 𝑒(𝑡 − 1), … , 𝑒(𝑡 − 𝑛𝑐)] 

[
 
 
 
 
 
 
 
 
𝑎1

⋮
𝑎𝑛𝑎

𝑏1

⋮
𝑏𝑛𝑏

𝑐1

⋮
𝑐𝑛𝑐 ]

 
 
 
 
 
 
 
 

                                 (6) 

𝑌̂(𝑡 + 1) = 𝜑(𝑡)  𝜃(𝑡)                                (7) 

where,  𝒀̂(𝒕 + 𝟏) , is the predicted output matrix, 𝝋(𝒕) , is the 

coefficient matrix of the parameters to be identified, it also 

called (regression matrix), 𝜽̂, represents the estimated parameter 

matrix, 𝒅 is the delay value. 

For each sample of the measured data t, the estimated parameter 

matrix 𝜽̂ was updated based on the online Recursive Extended 

Least Square (RELS) identification method [13][14]. 

RELS algorithm: 

𝑒(𝑡) = 𝑦(𝑡) −  𝜑(𝑡) 𝜃(𝑡 − 1) 

𝐴(𝑡) = 𝑃(𝑡 − 1) 𝜑(𝑡) 

𝐷(𝑡) = 𝜆 + 𝜑(𝑡)𝑇𝐴(𝑡) 

𝐿(𝑡) =  
𝐴(𝑡) 𝜑(𝑡)𝑇

𝐷(𝑡)
 

𝜃(𝑡) =  𝜃(𝑡 − 1) + 𝐿(𝑡)𝑒(𝑡) 

𝑃(𝑡) =
1

𝜆
[𝑃(𝑡 − 1) − 𝐿(𝑡)𝑃] + µ𝐼.                        (8) 

in which, 𝝀, is the forgetting factor which should be within range 

(0 < 𝝀 < 1), µ is the covariance resetting factor, 𝑰 is the identity 

matrix, and 𝑷(𝒕) , is a symmetric matrix, where, 𝝀 𝝐(𝟎: 𝟏] ,  

𝑷(𝟎) = 𝑷𝟎, 𝜽 ̂(𝟎) = 𝜽𝟎. 

B. RLS based ARX model identification:  

ARX model structure was also selected to simulate the dynamics 

behavior of the AAC system. The ARX model formula can be 

written as: 

𝑦(𝑡) =
𝐵(𝑞−1)

𝐴(𝑞−1)
𝑢(𝑡) +

1

𝐴(𝑞−1)
𝑒(𝑡)     (9) 

since the noise polynomial term C was ignored, then the 

disturbance term  𝒆(𝒕)  will not be excited, thus, the model 

assumed to describe the plant based only on the actual measured 

i/o date [15].  

𝑦(𝑡) =
𝐵(𝑞−1)

𝐴(𝑞−1)
𝑢(𝑡)     (11) 

𝐴(𝑞−1)𝑦(𝑡) = 𝐵(𝑞−1)𝑢(𝑡)             (12) 

using the same principle from polynomials equations set (3): 

(1 + 𝑎1𝑞
−1 + ⋯+ 𝑎𝑛𝑎𝑞−𝑛𝑎 )[𝑦(𝑡)]= (𝑏0 + 𝑏1𝑞

−1 + ⋯+
 𝑏𝑛𝑏𝑞

−𝑛𝑏  )[𝑢(𝑡)]                                   (13) 

thus, one step ahead (OSA) predicted output of ARX model can 

be obtained as following: 



𝑌̂(𝑡) =  [−𝑦(𝑡 − 1), . . . , −𝑦(𝑡 − 𝑛𝑎); 𝑢(𝑡 − 1), . . . , 𝑢(𝑡 −

𝑛𝑎)] 

[
 
 
 
 
 
𝑎1

⋮
𝑎𝑛𝑎

𝑏1

⋮
𝑏𝑛𝑏 ]

 
 
 
 
 

             (14) 

𝑌̂(𝑡 + 1) = 𝜑(𝑡) 𝜃 ̂(𝑡)                             (15) 

In order to estimate the parameter vector 𝜽̂, RLS identifier was 

adopted to update the parameter matrix at every single iteration, 

the algorithm steps is described as following [15], [16] 

RLS algorithm: 

𝐴(𝑡) = 𝑃(𝑡)𝜑(𝑡) 

𝐿(𝑡) = 𝜆 + 𝜑(𝑡)𝑇𝐴(𝑡) 

𝐾(𝑡) =  
𝐴(𝑡)

𝐿(𝑡)
 

𝑃(𝑡 + 1) =  𝜆−1𝑃(𝑡) + 𝜆−1𝑘(𝑡) 𝜑(𝑡)𝑇𝑃(𝑡) 

𝜃 ̂(𝑡 + 1) = 𝜃 ̂(𝑡) + 𝐾(𝑡)[𝑦(𝑡) − 𝜑(𝑡) 𝜃 ̂(𝑡)].            (16) 

where: 

𝜆 𝜖(0: 1],  𝑃(0) = 𝑃0, 𝜃 ̂(0) = 𝜃0 

C. Artificial Neural Networks (ANN) based NARX model: 

The principal processing element of the artificial neural network 

is a neuron, while weighted connecting serves as in the synapses. 

The structure of the ANN model is made up of three layers, 

every layer contains a specific number of neurons, the input 

layer contains N number of neurons that refer to the number of 

inputs signal and same principle for the output and the hidden 

layers as shown in Figure 1. 

 

Figure 1: The general architecture of MLP Neural Networks 

[17]. 

where K, L, represents the number of neurons in the input and 

output layer respectively, which refers to the number of input 

and output variables, while j refers to the number of neurons in 

the first hidden layer until Nth hidden layers.  

Every neuron received an input signal through weighted joints 

(inputs) and these inputs are summed in a particular manner. The 

formulation for the sum of the weighted inputs in given as: 

𝑛 = ∑ 𝑊𝑖  𝑃𝑖 + 𝑏𝑟
𝑖=1                               (17) 

where, 𝑷𝒊 is the input matrix, 𝑾𝒊 represent the weight connect 

indirectly the input with output, and b is the neuron bias. The 

summation of the biases with the weighted inputs is introduced 

through a function called the activation function, symbolize as 𝒇, 

in order to estimate the output based on the following formula 

[18]: 

𝑦(𝑛) = ƒ [ ∑ (𝑊𝑖  𝑃𝑖 + 𝑏
𝑟

𝑖=1
 )]                      (18) 

Multilayer perceptron (MLP) Network based NARX model was 

implemented with input, 𝒚(𝒕 − 𝟏) which is the previous output 

for time series at the time (𝒕 − 𝟏), and additional input  𝒙(𝒕 − 𝟏) 

with exogenous data at time  (𝒕 − 𝟏) , in order to obtain one 

estimated output 𝒚(𝒕), parallel to the one step ahead predicted 

output value 

Figure 2, shows MLP based NARX architecture with the 
exogenous principle, where the estimated 𝑦(𝑡) depends on the 
outer value as in the following formula. 

 

Figure 2: MLP based NARX model scheme 

The following equation represent the NARX structure [19]: 

𝑦(𝑡) = 𝑓1 [𝑥(𝑡 − 1)𝑥(𝑡 − 2), . . , 𝑥(𝑡 − 𝑞); 𝑦(𝑡 − 1)𝑦(𝑡 −
2), . . , 𝑦(𝑡 − 𝑝)]                                   (19) 

where,  𝒒  and 𝒑 are the maximum time lag for the input and 

output respectively which called delay number, 𝒚(𝒕) and 𝒖(𝒕) 

are the output and input sequence of the system, 𝒇𝟏  is a 

nonlinear function used to introduce the non-linearity of the 

system into the neural networks, which considered to be Tan-

Sigmoid activation function (tansig).  

Based on the description for the NARX model, the lagged value 

of the estimated outputs and exogenous inputs are provided 

through the training step. Levenberg–Marquardt methods was 

utilized to train the networks in which weights are adjusted with 

the following rule: 

𝑊𝑚+1 = 𝑊(𝑚) + (𝐽(𝑚)𝑇𝐽(𝑚))
−1

𝐽(𝑚)𝑇𝑒(𝑚)           (20) 

3 RESULTS AND DISCUSSION 

A. Parametric Identification results: 

Both, ARMAX and ARX model characters; model order and 

forgetting factor influence on the model performance were 

studied in this section in order to obtain the optimal models 

structure. Therefore, 11363 samples of experimental data that 

collected by Mat Darus [19] with frequency rate of 1 were used. 

The empirical data were divided into two data set, first 9000 

samples were taken for training purpose and the remaining 

input-output data for testing.  

For RLS based ARX model, the model order was fixed at 2, and 

the forgetting factor (λ) was varied among the range 0.1 to 0.9, 

 

 



where λ is a constant value, its main function is to provide a 

greater weight for the new estimated output value of the system. 

It also encourages the solution to search and heads toward 

quickly to the global minimum. While for RELS based ARMAX 

model, the forgetting factor is in the range of 0.9 to 0.98 rather 

than the range of 0.1 to 0.9, in order to avoid the covariance 

matrix blow up problem in the algorithm, while the order of the 

model was fixed at 2nd order, the results was tabled in Table 1, 

Table 1: Performance of parametric identification models 

The analysis is continued by examining the effect of the model 

order which it reflects on the model parameters of the 

polynomials; 𝐴(𝑞−1), 𝐵(𝑞−1) and 𝐶(𝑞−1), where it was varied 

up to 10th order. 

The results have shown that the lowest mean square error by 

testing the forgetting factor was obtained when the forgetting 

factor is 0.9 for both models. However, it should be noticed that 

the ARX model parameters disposed to have slight fluctuation, 

and as we increase λ it is starting to converge as shown in Figure 

3. Due to the fluctuation it leads to a high fluctuation in the 

predicted error for the ARX model as in Figure 5, while 

ARMAX model parameters converged quickly as in Figure 

4.The estimated data obtained by ARX and ARMAX models are 

both in high-grade agreement with the actual data of the cabin 

temperature of AAC system as in Figure 7, which proved its 

capability to estimate the temperature through the training and 

testing phase. 

Based on unit circle stability analysis, it was found that all the 

poles are located within the unit circle as in Figure 8 for both 

parametric models which indicates stable models. 

Figures 9(a) and 9(b) illustrate the correlation tests results for 

ARX and ARMAX models, respectively. The first four graphs 

illustrate the linear part of the correlation tests, it can be 

observed that the relationship between the predicted error with 

the input and with itself proportionally to the shifted copies of 

the output are relatively within the confidence range. As 

expected, the ARX model predicted residual is relatively 

confined to the bounds of the confidence intervals for all of the 

equation sets while the ARMAX model perform perfectly for the 

nonlinear part of the statistical tests; Ø𝒖𝟐𝒆(𝛕) ,  Ø𝒖𝟐𝒆𝟐(𝛕)  and 

Ø𝒆 (𝒆𝒖) (𝛕), comparing to the ARX model for testing data set 

record as shown in Figure 9. 

 

 

Figure 3: Parameter fluctuation under different values of λ 

for ARX model. 

 

Figure 4: Parameter fluctuation under different values of λ 

for ARMAX model. 

 

Figure 5: Predicted error by online RLS based ARX model. 

ARMAX ARX 

M.O 

ARMAX model ARX model 

MSE 

(× 10−4) 

MSE  

(× 10−4) 
λ 

MSE  

(× 10−6) 
λ 

0.050257 2.73404 2 0.054581 0.98 3.84038 0.1 

0.073165 4.32648 3 0.059816 0.97 2.95146 0.2 

0.116501 5.80097 4 0.068187 0.96 2.95448 0.3 

0.178413 7.25733 5 0.075833 0.95 3.08952 0.4 

0.225308 8.73772 6 0.080634 0.94 3.30006 0.5 

0.267102 10.2703 7 0.081027 0.93 3.47030 0.6 

0.316466 11.8856 8 0.075322 0.92 3.43540 0.7 

0.367607 13.5658 9 0.063432 0.91 3.14383 0.8 

0.415979 15.2581 10 0.050257 0.90 2.73404 0.9 



 

Figure 6: Predicted error by online RELS based ARMAX 

model. 

 

Figure 7: Actual versus predicted output via ARX and 

ARMAX model. 

 

Figure 8: Unit circle stability analysis ARX and ARMAX 

respectively. 

B. Non-Parametric Model Results: 

The optimal NARX-Neuro structure was accomplished by 

altering three characters; the number of the hidden layer, number 

of delays, and neurons numbers per hidden layer. It is common 

to say, the neuro structure was determined through the trial-and-

error procedure since there is no a methodical approach, where 

some investigations explicate that one or two hidden layers may 

result in good convergence. 

The number of neurons was varied coincidently with the delay 

number while fixing the hidden layer number at 1, 2 and 3 layers 

in term of Mean Square Error via One Step Ahead prediction 

(OSA) as illustrated in Figure 10. 

However, from Figure 10, it can be observed that for the first 

four increments of the neurons, significant reduction of the MSE 

takes place up to a certain limitation, then suddenly the MSE 

starts to increase when the neurons go beyond 12 neurons per 

hidden layers. it can be stated obviously, increasing the neurons 

overmuch influence the generalization capability of the neuro 

structure and extends the computational load. 

  

  

  

  

  

a) ARX Model b) ARMAX Model 

Figure 9: Correlation tests. 

The best MSE was achieved when there are 12 neurons with one 

hidden layer while the delay is 2 for input and output; is 

(1.90172 ×𝟏𝟎−𝟓) and the time consumed to train the network 

was 39.985 seconds. 

The predicted output by the NARX via NN model is almost 

fitted to the actual data of the cabin temperature variable of the 

AAC system where the regression value   𝑹 was found to 

be 𝟎. 𝟗𝟗𝟗𝟗𝟑 to the actual data as in Figure 11 and Figure 12, the 

model was found to be unbiased based on the statistical tests 

where the residual is relatively within the confidence bounds as 

shown in Figure 13. 



Figure 10: MLP networks performance under different 

structures. 

 

Figure 11: Actual versus predicted output via Multilayer 

perceptron networks. 

 

Figure 12: Regression Plot of Multilayer perceptron based 

NARX model. 

 

Figure 13: Correlation tests of Multilayer perceptron based 

NARX. 

4 CONCLUSION 

Performance comparison between the ARMAX model identified 

using RELS, ARX model based RLS, and NARX model via 

MLP in different model orders, forgetting factor, delay value, 

neurons and hidden layer numbers in term of mean square error 

(MSE) of residuals due to one step ahead prediction (OSA) were 

studied and the results were obtained. 

The lowest MSE for all three models were achieved by 2nd 

order ARMAX model based RELS with forgetting factor of 0.9, 

2nd order ARX model based RLS with forgetting factor of 0.9 

and MLP network with one hidden layer consists of 12 neurons 

while the delay is two. The lowest mean square errors were 

5.0257×𝟏𝟎−𝟔 , 2.7341×𝟏𝟎−𝟒 , and 1.9017×𝟏𝟎−𝟓 for ARMAX, 

ARX and NARX respectively. On the other hands, the 

simulation time consumed by MLP is highest compared to other 

identifiers, while the regression value is almost tending to one 

for all estimated models. 

The AAC system requires a robust model that can deal with a 

wide kind of disturbance, from statistical tests we can state that, 

ARMAX model is further comprehensive, complementary and 

obviously a good option for such system compared to ARX and 

NARX model based on residual analysis, at which the ARMAX 

has high ability to turn the disturbance almost into a white noise, 

where the estimated residuals in ARMAX was applied to predict 

the exogenous disturbance variable, since the Recursive 

Extended Least Square method is well-known to whiten the 

residuals in availability of a well-modelled disturbance variable. 



Therefore, in conclusion, for the AAC system studied in this 

research, the ARMAX model based RELS has higher tractability 

to model the disturbances affects compared to ARX model based 

RLS and NARX model via MLP networks with the lowest MSE 

prediction error of 5.0257×𝟏𝟎−𝟔. 
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