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Abstract

The advance rate (AR) of a tunnel boring machine (TBM) under hard rock conditions is a key parameter in the successful implemen-
tation of tunneling engineering. In this study, we improved the accuracy of prediction models by employing a hybrid model of extreme
gradient boosting (XGBoost) with Bayesian optimization (BO) to model the TBM AR. To develop the proposed models, 1286 sets of
data were collected from the Peng Selangor Raw Water Transfer tunnel project in Malaysia. The database consists of rock mass and
intact rock features, including rock mass rating, rock quality designation, weathered zone, uniaxial compressive strength, and Brazilian
tensile strength. Machine specifications, including revolution per minute and thrust force, were considered to predict the TBM AR. The
accuracies of the predictive models were examined using the root mean squares error (RMSE) and the coefficient of determination (R2)
between the observed and predicted yield by employing a five-fold cross-validation procedure. Results showed that the BO algorithm can
capture better hyper-parameters for the XGBoost prediction model than can the default XGBoost model. The robustness and general-
ization of the BO-XGBoost model yielded prominent results with RMSE and R2 values of 0.0967 and 0.9806 (for the testing phase),
respectively. The results demonstrated the merits of the proposed BO-XGBoost model. In addition, variable importance through mutual
information tests was applied to interpret the XGBoost model and demonstrated that machine parameters have the greatest impact as
compared to rock mass and material properties.
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1 Introduction

Predicting tunnel boring machine (TBM) performance is
critical for estimating the project costs and duration of
https://doi.org/10.1016/j.undsp.2020.05.008
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mechanized tunneling projects. The prediction of TBM
performance depends on the accurate estimation of the
advance rate (AR), penetration rate (PR), and/or utiliza-
tion coefficients (AR/PR) (Sapigni, Berti, Bethaz, Busillo,
& Cardone, 2002; Yagiz, Gokceoglu, Sezer, & Iplikci,
2009; Xu, Zhou, Asteris, Jahed Armaghani, & Tahir,
2019; Gao, Wang, et al., 2020, Gao, Amar, et al., 2020;
Zhou, Bejarbaneh, et al. 2020). In particular, AR is the
actual distance mined or supported divided by the total
time of the operations and includes downtimes for TBM
behalf of KeAi Communications Co. Ltd.
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maintenance, tunnel failure, machine breakdown, etc. Over
the years, numerous TBM performance prediction models
have been developed using empirical, theoretical, and
semi-empirical approaches (Graham, 1976; Barton, 1999;
Sapigni et al., 2002; Yagiz, 2008; Gong & Zhao, 2009;
Hamidi, Shahriar, Rezai, & Rostami, 2010; Zhang &
Goh, 2013; Goh, Zhang, Zhang, Xiao, & Xiang, 2018;
Armaghani, Mohamad, Narayanasamy, Narita, & Yagiz,
2017, 2018; Koopialipoor, Nikouei, et al., 2019,
Koopialipoor, Tootoonchi, et al., 2019, 2020; Zhang, Li,
Wu, Li, Liu, et al., 2020; Zhang, Li, Wu, Li, Goh, et al.,
2020; Zhou, Bejarbaneh, et al., 2020). However, because
these empirical and theoretical investigations focus on only
a few important parameters, their performance predictions
are unacceptable, and most of them are applicable only to
their specific projects (Armaghani, Koopialipoor, Marto,
& Yagiz, 2019).

In addition to empirical and theoretical investigations,
many researchers have applied various artificial intelligence
(AI) techniques for TBM performance prediction. For
example, Grima, Bruines, and Verhoef (2000) proposed
the neuro-fuzzy method to model the performance of
TBMs for 640 TBM projects. Zhao, Gong, Zhang, and
Zhao (2007) applied a TBM performance prediction model
using ensemble neural networks with 47 sets of data. In
another investigation, Yagiz and Karahan (2011) imple-
mented a particle swarm optimization (PSO) technique
for forecasting the TBM PR in hard rock. Recently,
Armaghani et al. (2019) developed two hybrid optimization
techniques based on PSO and an imperialist competitive
algorithm (ICA) for predicting the AR of TBM in different
weathered zones of granite. The aforementioned models
have both advantages and disadvantages, and efforts have
been made to enhance the accuracy of these models and to
minimize their shortcomings. Understanding and predict-
ing the performance of TBM still poses a considerable chal-
lenge for TBM excavation under hard rock conditions.

Extreme gradient boosting (XGBoost) proposed by
Chen and Guestrin (2016) is a powerful ensemble learning
algorithm based on a gradient boosting system (Friedman,
2001; Xia, Liu, Li, & Liu, 2017; Zhou et al. 2015, 2016,
2018). More specifically, XGBoost is a powerful data-
mining tool that has been widely used and proven effective
in many regression and classification problems (Le,
Nguyen, Zhou, Dou, & Moayedi, 2019; Zhou, Li, Wang,
et al., 2019; Zhou, Li, Yang, et al., 2019; Ding, Nguyen,
Bui, Zhou, & Moayedi, 2020; Wang et al., 2020; Zhang
et al., 2019, Zhang, Wu, et al., 2020; Zhang, Zhang, Wu,
Goh, & Wang, 2020). Accordingly, we decided to illustrate
the capability of the XGBoost technique in TBM AR pre-
diction. In addition, tuning the hyper-parameters of
XGBoost models for TBM datasets is also worthwhile.
Thus, the Bayesian optimization (BO) algorithm is used
to optimize the hyper-parameters of XGBoost. This is an
innovative work, as TBM AR prediction under hard rock
conditions has not been previously investigated in the
manner described in this study. In the following sections,
Please cite this article as: J. Zhou, Y. Qiu, S. Zhu et al., Estimation of the TB
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following descriptions of the data and case study, AI
models and their modeling process are explained. The
results of the AI models in predicting the TBM AR are
then assessed and discussed. Finally, a sensitivity analysis
of our data is conducted to identify the most important
parameters for the TBM AR.

2 Materials and methods

2.1 Dataset preparation

In this study, 1286 datasets from the Peng Selangor Raw
Water Transfer (PSRWT) tunnel project in Malaysia were
prepared for use as a comprehensive database to predict
the AR of TBM and in the construction of artificial intelli-
gence models based on XGBoost. This database consists of
560, 553, and 173 datasets of fresh zone of rock mass,
slightly weathered zone of rock mass, and moderately
weathered zone of rock mass, respectively. In each section
of the tunnel, relevant machine factors, rock material, and
mass characteristics were recorded, including rock mass
strength properties, joint condition, revolution per minute
(RPM), weathering zone (WZ), uniaxial compressive
strength (UCS), rock mass rating (RMR), Brazilian tensile
strength (BTS), rock quality designation (RQD), and trust
force per cutter (TFC).

The established research database contains total eight
variables (i.e., seven input characteristics affecting the
TBM AR and TBM AR as model output), where the input
variables can be divided into rock mass properties (RMR,
WZ, and RQD), rock material properties (UCS and BTS),
and machine characteristics (TFC and RPM). In the mod-
eling process, to facilitate the use of WZ data, a rating sys-
tem for each WZ was adopted. As noted by the
International Society for Rock Mechanics (1981), a typical
rock weathering profile is composed of six weathering
grades: fresh, slightly weathered, moderately weathered,
highly weathered, completely weathered, and residual soil
(see Table 1). This classification is mainly based on the dis-
coloration and decomposition of the rock material. After
tunnel mapping from 34 740 m of PSRWT tunnel exca-
vated by TBMs, the following was investigated: a total of
12 649 m consisting of 5443 m in fresh, 5530 m in slightly
weathered, and 1676 m in moderately weathered zones.
The ratings for the fresh, slightly, and moderately weath-
ered zones were 1, 2, and 3, respectively. It should be noted
that a similar procedure was conducted in the work of
Benardos and Kaliampakos (2004).

The range and mean values of the influencing factors
(BTS, UCS, RMR, RQD, WZ, TFC, and RPM) together
with the AR of the TBM are listed in Table 1. It can then
be seen from the matrix analysis chart presented as Fig. 1
that a correlation existed between the input variables in
the database and between the input parameters and
output of AR. In Fig. 2, the violin plot depicts the distri-
bution of each input and output and provides an analysis
of outliers.
M advance rate under hard rock conditions using XGBoost and Bayesian
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Table 1
Description of variable definitions, ranges, and categories.

Category Symbol Unit Parameter description Note

(min–max) Mean

Input BTS MPa (4.69–15.68) 10.321 Rock material properties
Input UCS MPa (40–194) 135.128 Rock material properties
Input RMR – (44–95) 72.894 Rock mass properties
Input RQD Percentage (6.25–95.00) 54.259 Rock mass properties
Input WZ – (1–3) 1.699 Rock mass properties
Input TFC kN (80.60–565.84) 301.514 Machine characteristics
Input RPM r∙min�1 (4.04–11.95) 8.827 Machine characteristics
Output AR m∙h�1 (0.017–5) 1.083

Fig. 1. Scatterplot matrix of TBM dataset with correlation.
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2.2 Extreme gradient boosting (XGBoost)

XGBoost, proposed by Chen and Guestrin (2016), is a
scalable machine learning system associated with tree
boosting. This system has been applied to many engineer-
ing fields and has produced excellent performance due to
the advantages of effective tree pruning, regularization,
and parallel processing.

As the archetype of XGBoost, gradient boosting combi-
nes the predictions of a few ‘‘weak” learners into a
‘‘strong” learner in an iterative manner (Le et al., 2019;
Ding et al., 2020; Zhang, Li, Wu, Li, Goh, et al., 2020,
Zhang, Wu, et al., 2020). XGBoost utilizes the residual to
calibrate the previous predictor at each iteration; this is a
process of optimizing the loss function. In addition, to
reduce the risk of overfitting in the calibration process,
XGBoost adds regularization into the objective function,
which can be described by

J Hð Þ ¼ L Hð Þ þ X Hð Þ ð1Þ
Please cite this article as: J. Zhou, Y. Qiu, S. Zhu et al., Estimation of the TBM
optimization, Underground Space, https://doi.org/10.1016/j.undsp.2020.05.00
where H is the parameter trained from the given data; X
denotes regularization, which is meant to avoid overfitting
because it can control the complexity of the model; L indi-
cates the training loss functions (i.e., square/logistic loss),
which measures how well the model fits the training data.
Equation (2) is a prediction function; according to the the-
ory of decision tree (DT), the output of the model ŷi
depends on voting or the average of a collection F of k
trees:

by i ¼ Xk

i¼1
f k xið Þ; f k 2 F : ð2Þ

The objective function at the t time iteration can be
described by a more specific mathematical model given by

J tð Þ ¼
Xn

i¼1
L yi; by ið Þ þ

Xt

k¼1
X f kð Þ: ð3Þ

Here, n is the number of predictions, and ŷ tð Þ
i can be

defined as

by tð Þ
i ¼

Xt

k¼1
f k xið Þ ¼ by i t�1ð Þ þ f t xið Þ: ð4Þ
advance rate under hard rock conditions using XGBoost and Bayesian
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Fig. 2. Violin plots of TBM database used in the XGBoost modeling process.
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As illustrated by Chen and Guestrin (2016), the regular-
ization term X f kð Þ for the DT is denoted as

X f kð Þ ¼ cT þ 0:5k
XT

j¼1
xj

2; ð5Þ
where k scales the penalty, T represents the number of
leaves in the DT, in which the complexity of each leaf is
indicated by c, and x is the vector of scores on the leaves.
Then, second-order (instead of first-order) Taylor expan-
sion in general gradient boosting is applied to the loss func-
tion (LOF) in XGBoost (Chen & Guestrin, 2016; Xia et al.,
2017). When the mean square error (MSE) is assumed as
the LOF, the objective function can be obtained by the fol-
lowing equation:

J tð Þ �
Xn

i¼1
gixq xið Þ þ 1

2
hix2

q xið Þ
� �� �

þ cT þ 1

2
k
XT

j¼1
xj

2;

ð6Þ
where gi and hi represent the first and second derivatives of
the MSE loss function, respectively, and q is a function that
assigns a data point to the corresponding leaf.

Obviously, the LOF in Eq. (6) is subject to the sum of
the loss values for each data sample. Because each data
sample only corresponds to one leaf node, the sum of the
loss values of each leaf node can also be used to describe
the LOF, namely,

J tð Þ � cT þ
XT

j¼1

X
i2ij

gi
� �

xj þ 0:5
X

i2ij
hi þ k

� �
x2

j

h i
:

ð7Þ
Accordingly, Gj and Hj are defined as

Gj ¼
X

i2ij
gi;Hj ¼

X
i2ij

hi; ð8Þ

where Ij indicates all the data samples in leaf node j.
Please cite this article as: J. Zhou, Y. Qiu, S. Zhu et al., Estimation of the TB
optimization, Underground Space, https://doi.org/10.1016/j.undsp.2020.05.00
Overall, the optimization of the objective function can
be converted to a process of finding the minimum of a
quadratic function. In other words, after a certain node
in the DT is split, the objective function is used to evaluate
the change in model performance. If the model perfor-
mance is greater than previously, this split will be adopted;
otherwise, the split will be stopped. In addition, regulariza-
tion is helpful to avoid over-fitting.
2.3 BO

Many optimizations assume that the objective function
f xð Þ is a known mathematical form and a convex function
that is easy to evaluate. For parameter tuning, the objective
function is unknown and is a computationally expensive
non-convex function. Therefore, the commonly used opti-
mization methods have difficulties in playing a critical role,
and the BO method is extremely powerful when the objec-
tive function is unknown and the calculation complexity is
high. BO uses prior knowledge to approach the posterior
distribution of the unknown objective function and then
selects the next sampled hyperparameter combination
according to the distribution.

In general, selecting hyperparameters for optimal per-
formance is desirable. Therefore, hyperparameter selection
can be regarded as an optimization problem, that is, a per-
formance function f xð Þ whose optimal hyperparameter
value is an independent variable. BO has been proven to
be superior to other global optimization algorithms on
many challenging optimization benchmark functions
(Jones, 2001). To use the BO technique, we need an efficient
means of modeling the distribution of the objective func-
tion. If x contains continuous hyperparameters, there will
M advance rate under hard rock conditions using XGBoost and Bayesian
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be an infinite number of x to model f xð Þ (i.e., to construct a
distribution for the objective function). For this problem,
the Gaussian process (Williams, 1998; Rasmussen 2004;
Rasmussen and Williams 2005) generates a multidimen-
sional Gaussian distribution, which is a high-dimensional
normal distribution sufficiently flexible to model any objec-
tive function. In other words, BO assumes that the function
to be optimized is f : X ! R, where X � Rn; n 2 N . Then,
in each iteration (t = 1,2,� � �,T), f xtð Þ; xt 2 X is obtained
according to the acquisition function (at). Then, a noisy
observation yt ¼ f xtð Þ þ e is obtained, where e follows the
zero-mean Gaussian distribution e � N 0; r2ð Þ, and r is
the noise variance. Then, new observations xt; ytð Þ are
added to the observation data, and then the next
iteration is performed. BO makes the most of the informa-
tion from the previous sampling point through the learning
of the objective function and finds the parameters that
improve the result to the global optimum. The algorithm
tests the most likely point given by the posterior
distribution.

In this study, XGBoost is the baseline model for fore-
casting the TBM AR, and the BO technique is applied to
search the optimal hyperparameters of the XGBoost
model. In this regard, the BO algorithm is used to optimize
five parameters involved in the performance of the
XGBoost model, including Num_boosting_rounds, Max_-
depth, Learning_rate, Reg_alpha, and Reg_lambda. Nota-
bly, the optimal XGBoost model is determined by the
minimum value of the root mean square error (RMSE).
Figure 3 displays the analytical process of the BO-
XGBoost model in estimating the TBM AR from the
beginning to the end.
2.4 Verification and evaluation of the XGBoost-based model

In this study, a training set was employed to build the
predictive model, and a test set was used to examine the
trained model. In addition, with the aim of evaluating the
reliability of the hybrid BO-XGBoost model effectively,
the relevant evaluation indicators, namely, the coefficient

of determination (R2) and RMSE, were applied to interpret
the relationship between the predicted and observed values.
RMSE represents the standard deviation of the fitted error

between the predicted and observed values. The value of R2

represents the percentage of the square of the correlation
between the predicted and actual values of the target vari-
able. The calculation formulas of the evaluation indicators
are presented as follows (Li et al., 2020; Shi, Zhou, Wu,
Huang, & Wei, 2012; Gao, Wang, et al., 2020, Gao,
Amar, et al., 2020; Guo, Zhou, Koopialipoor,
Armaghani, & Tahir, 2019; Bui et al., 2020; Yong et al.,
2020; Yu et al., 2019; Yu, Shi, Zhou, Chen, & Qiu, 2020;
Yu, Shi, Zhou, Chen, Miao, et al., 2020; Zhang, Li, Wu,
Li, Liu, et al., 2020; Zhang, Li, Wu, Li, Goh, et al., 2020;
Zhang, Wu, Zhong, Li, & Wang, 2020; Zhou, Li, & Shi,
2012, 2017; Zhou, Li, Arslan, Hasanipanah, & Amnieh,
Please cite this article as: J. Zhou, Y. Qiu, S. Zhu et al., Estimation of the TBM
optimization, Underground Space, https://doi.org/10.1016/j.undsp.2020.05.00
2019; Zhou, Li, Wei, et al., 2019; Zhou, Guo, et al.,
2020; Zhou, Li, et al., 2020):

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1
by i � yið Þ2=N

r
; ð9Þ

R2 ¼ 1�
P

i yi � by ið ÞP
i yi � y

�
i

� �22; ð10Þ

where yi represents the observed value, ŷi is the predicted

value of the model, y
�
i represents the average of the

observed values, and N denotes the number of samples in
the training or testing stages.
3 Results and discussion

For the sake of predicting the TBM AR under hard rock
conditions, the BO algorithm was combined with XGBoost
(i.e., BO-XGBoost). Based on the aforementioned opti-
mization results, a hyperparameter configuration with a
higher prediction performance than the default XGBoost
model was obtained. Table 2 shows the parameter search
space and parameter adjustment selection of the XGBoost
model in the BO process during TBM AR prediction. The
initial sample of the five pairs of XGBoost hyperparame-
ters (shown in Table 2) were randomly sampled from
search space X , the number of iterations in the BO was
fixed at 100, and the associated five-fold cross-validation
RMSE values were obtained after the XGBoost model
was trained. Thus, the optimal hyperparameters of the
XGBoost model could be finally determined when the
model had the lowest cross-validation RMSE value. In
addition, Fig. 4 plots the fitness values of the BO algorithm
with the number of iterations in the process of parameter
optimization. It can be seen that as the number of itera-
tions increased, the fitness gradually stabilized. Variations
in the parameter values during the optimization process
are plotted in the dependency plot of Fig. 5, and the
optimal parameters that were obtained are marked on it.
It can be seen from the partial dependence plot that
‘‘Num_boosting_rounds”, ‘‘Max_depth”, and ‘‘Learning-
rate” had the greatest impact on the target optimization.

To better understand the performance of the BO-
XGBoost, the measured and predicted AR values of the
training and testing datasets are presented in Fig. 6. The
figure shows that the AR results predicted by the BO-
XGBoost model were closer to their measured values than
were those of the default XGBoost predictive model. Based
on the optimized hyperparameter results (see Table 3), the
prediction accuracy of the BO-XGBoost test set after the
hyperparameters were adjusted was higher than that of

the default XGBoost model. The R2 and RMSE values
were 0.9806 and 0.0967 for the BO-XGBoost model,
respectively, whereas they were 0.9399 and 0.1703 for the
XGBoost model, respectively. This proved that, for the
TBM dataset that predicts AR, BO-XGBoost could better
fit the complex relationship between the factor variables
advance rate under hard rock conditions using XGBoost and Bayesian
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Fig. 3. Overall analytical process of the BO-XGBoost model.

Table 2
Search space and optimal hyperparameters for each of the XGBoost parameters in the
BO tuning process.

XGBoost hyperparameters Lower limit Upper limit Optimal values

Num_boosting_rounds 1 150 103
Max_depth 1 15 15
Learning_rate 0.000 01 1 0.152
Reg_alpha 1 15 1
Reg_lambda 1 15 13

Fig. 4. Fitness and iteration relationship during BO.
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affecting AR and TBM and that the generalization ability
was better.

Finally, the BO-XGBoost prediction model obtained
satisfactory prediction results, showing favorable
Please cite this article as: J. Zhou, Y. Qiu, S. Zhu et al., Estimation of the TB
optimization, Underground Space, https://doi.org/10.1016/j.undsp.2020.05.00
adaptability. Therefore, it is suitable for evaluating the
TBM AR.

Results from previous relevant studies reveal that the
BO-XGBoost model developed in this study is superior
to the earlier models. For example, Armaghani et al.
(2019) concluded that their ICA-artificial neural network
(ANN) model with an R2 of 0.951 for testing datasets
was the best predictive model for the TBM AR. In another
study, Zhou, Bejarbaneh, et al. (2020) produced ANN and
genetic programming models for predicting the TBM AR
and concluded that their genetic programming predictive
model was the best among them. An R2 value of 0.916
was obtained with testing data of the genetic programming
predictive model. These results prove that the developed
predictive model (i.e., BO-XGBoost) is a powerful, applica-
ble, and practical system for predicting the TBM AR, and
it can be recommended as an alternative model the area of
TBM AR prediction.

4 Sensitivity analysis

Under certain rock conditions, predicting the TBM AR
with high accuracy is the key to mechanical excavation in
M advance rate under hard rock conditions using XGBoost and Bayesian
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Fig. 5. Dependency plot of parameter adjustment during BO.
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tunnel engineering. Various factors affecting AR must be
fully considered to precisely predict the AR of TBM and
reduce the high cost and risk of tunnel construction. Our
study showed that all input variables (i.e., RQD, UCS,
RMR, BTS, WZ, TFC, and RPM) contribute to TBM
AR prediction. However, the sensitivity of each input indi-
cator remains unclear and must be adequately resolved in
further investigation.

To explore and compare the sensitivity of different fac-
tors influencing the TBM AR, the mutual information
(MI) method (Verron, Tiplica, & Kobi, 2008) was used to
analyze the importance of input indicators on the TBM
AR. The MI method is a filtering method used to capture
Please cite this article as: J. Zhou, Y. Qiu, S. Zhu et al., Estimation of the TBM
optimization, Underground Space, https://doi.org/10.1016/j.undsp.2020.05.00
the arbitrary relationship (including linear and nonlinear
relationships) between each feature and the label. It is a
measure of the interdependence between variables and indi-
cates the strength of the relationship between variables.
The size of the MI between variables can be calculated
using the information gain expressed as:

Gain Y ;Xð Þ ¼ Ent Yð Þ �
XV

v�1

Y vj j
Yj j Ent Y

vð Þ; ð11Þ
where m represents the number of all possible values of X ,
Ym represents the set of Y corresponding to a situation
when x takes xm, and Ent(Y) represents the information
advance rate under hard rock conditions using XGBoost and Bayesian
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(a) XGB(training set) (b) XGB(test set)

(c) BO-XGBoost (training set) (d) BO-XGBoost (test set)

Fig. 6. Results of the XGB and BO-XGBoost models for the training and testing datasets.

Table 3
Performance comparison of the proposed BO-XGBoost and XGBoost
models.

Model Train Test

R2 RMSE R2 RMSE

XGBoost 0.9700 0.1134 0.9399 0.1703
BO-XGBoost 0.9866 0.0759 0.9806 0.0967

Fig. 7. Sensitivity analysis of the BO-XGBoost model with seven
indicators for the TBM AR.

8 J. Zhou et al. / Underground Space xxx (xxxx) xxx
entropy. The greater the value of Gain(Y, X), the higher
the correlation between X and Y.

Finally, based on the variable score from the MI
method, the importance level of the input variable that pre-
dicts AR was determined. The analytical results as shown
in Fig. 7 reveal that TFC, RPM, and RMR were the most
important variables for predicting permeability. Their
importance scores were 1.451, 1.289, and 1.040, respec-
tively. However, it should be noted that other model inputs
(i.e., BTS, RQD, and UCS) had a considerable effect on the
Please cite this article as: J. Zhou, Y. Qiu, S. Zhu et al., Estimation of the TBM advance rate under hard rock conditions using XGBoost and Bayesian
optimization, Underground Space, https://doi.org/10.1016/j.undsp.2020.05.008
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TBM AR. Therefore, during TBM AR prediction, TFC,
RPM, RMR, UCS, RQD, and BTS are major factors to
be considered. Note that WZ is not considered an influen-
tial factor for the TBM AR. For future studies, a greater
number of input variables and samples must be used to
enrich the dataset. This will ensure the model achieves bet-
ter prediction accuracy and generalization.

5 Conclusion

The accurate prediction of TBM performance has a
major influence on the smooth implementation of tunnel
engineering. Therefore, this study proposed a BO-
XGBoost predictive model to evaluate the TBM AR. A
TBM database was created through an on-site assessment
of the PSRWT tunnel project in Malaysia and related
laboratory tests on samples. The TBM database contained
seven input features (i.e., UCS, BTS, RMR, RQD, WZ,
TFC, and RPM) and one output (AR).

By fully considering the influencing factors affecting the
AR, we used the established TBM database to train and
test the XGBoost and BO-XGBoost models, and RMSE

and R2 were used to evaluate the performance of the mod-
els. Finally, a variable analysis of the proposed BO-
XGBoost model was performed, and the importance scores
of the input variables were obtained using the MI method.
There scores were 1.451 (TFC), 1.289 (RPM), 1.040
(RMR), 0.945 (UCS), 0.944 (RQD), 0.878 (BTS), and
0.057 (WZ). Of these, TFC, RPM, and RMR were consid-
ered to be highly sensitive factors.

Comparing the default XGBoost model (RMSE is

0.1703, R2 is 0.9399) with the BO-XGBoost model (RMSE

is 0.0967, R2 is 0.9806), we observed that the BO-XGBoost
prediction model was more precise than the default model,
and determined that the proposed BO-XGBoost model is a
reliable method for predicting the TBM AR.
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