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Abstract: Graph theory is a well-established concept that is widely used in numerous applications

such as in biology, chemistry and network analysis. The advancement in the theory of graph has led

to the development of a new concept called fuzzy autocatalytic set. In this paper, a fuzzy graph-based

chemometrics method, namely, chemometrics fuzzy autocatalytic set (c-FACS) is developed and

applied for gelatin authentication. The issue on authenticity of gelatin has become a sensitive issue

among some religious communities. Due to the matter, Fourier transform infrared (FTIR) spectra

of bovine, porcine and fish gelatins are analyzed using c-FACS to identify their signatures and

differences and presented in this paper. The results from the c-FACS analysis showed distinct features

of each gelatin, particularly porcine. Furthermore, the new method is faster than principal component

analysis (PCA) in identifying the gelatin sources.

Keywords: fuzzy autocatalytic set; fuzzy graph; chemometrics; gelatin authentication; Fourier

transform infrared spectroscopy

1. Introduction

Leonhard Euler first introduced graph theory in 1736 [1]. Euler’s idea in solving the Konigsberg

bridge problem in form of nodes and edges has contributed towards the development of a concept

called graph. Since then, graph has been widely used in many areas such as chemistry [2,3], biology [4],

and social network analysis [5]. Jain and Krishna [2] applied graph to represent catalytic interaction

between molecules while Imran et al. [3] studied chemical graph of an oxide network. Falcon et al. [4]

and Kostić et al. [5] implemented graph on cell cycle and social network analysis in telecommunications,

respectively. The founder of fuzzy set theory, Zadeh [6] pointed out that some real application problems

may involve imprecise description or fuzziness; hence, fuzzy set is suitable for such challenges.

The advancement in fuzzy set theory has led to the development of a new concept in graph, namely,

fuzzy graph [7]. Akram et al. [8] presented different notions and applications of fuzzy graph.

Furthermore, Jan et al. [9] studied the concept of interval-valued fuzzy graph and neutrosophic graphs,

and Mathew et al. [10] introduced vertex rough graphs. In addition, fuzzy graph concept, introduced

first by Rosenfeld [7], was further explored by Ahmad et al. [11] later. Ahmad et al. [11] introduced

fuzzy autocatalytic set (FACS) as a result of a merger between fuzzy graph and autocatalytic set (ACS).

In short, fuzzy graph is a graph that incorporates fuzziness [7], and ACS is a graph representation of

chemically interacting molecules [2]. Ahmad et al. [11] introduced FACS to model a clinical waste

incineration process. The process occurring in the system was represented in the form of a FACS

Mathematics 2020, 8, 1969; doi:10.3390/math8111969 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0001-5491-0681
https://orcid.org/0000-0003-2675-7952
http://www.mdpi.com/2227-7390/8/11/1969?type=check_update&version=1
http://dx.doi.org/10.3390/math8111969
http://www.mdpi.com/journal/mathematics


Mathematics 2020, 8, 1969 2 of 18

graph, whereby the vertices represent variables that play important roles during the process while

the edges represent their connections. The FACS method was able to identify the sequence of the

depleted variables as well as products of the system. Since then, FACS has been further studied

and applied in other systems such as the pressurized water reactor (PWR) [12]. On the other hand,

Bakar et al. [13] studied the mathematical properties of FACS and its coordinated transformation form.

However, in this paper, FACS and coordinated FACS are composed together to form a new algorithm

in solving large and complex chemical data.

Chemometrics is a field of chemistry that applies mathematical methods in analyzing chemical

data [14]. The chemometrics technique is commonly used in authentication analysis involving gelatin.

Gelatin is a protein substance that is usually used as an ingredient in foods such as jelly, dairy product and

various desserts as well as pharmaceutical capsule-based products. However, the issue of authenticity

of the sources of the gelatins has become a concern, particularly for the Muslim community due to

the possible presence of non-halal porcine gelatin in some products. Numerous methods have been

developed and reported on authentication of gelatins [14]. Nemati et al. [15] and Widyaninggar et al. [16]

applied high performance liquid chromatography (HPLC) in combination with principal component

analysis (PCA) to differentiate bovine and porcine gelatins. Their results showed distinct classification

of the gelatins. Hashim et al. [17] and Zilhadia [18] also utilized PCA in combination with Fourier

transform infrared (FTIR) spectroscopy to analyze bovine and porcine gelatins, while Cebi et al. [19]

included fish gelatin in their study. The FTIR method was proven to be efficient in analyzing

food adulteration analysis [17]. However, further analysis using mathematical or chemometrics

methods are required to differentiate the gelatins due to large similarities of their protein structure.

Thus, Hashim et al. [17], Cebi et al. [19] and Zilhadia [18] used PCA to analyze the gelatin spectra and

their PCA results showed that the gelatins clusters were well separated. The PCA is widely used in

multivariate data analysis to extract information from data with multiple variables [20]. It decomposes

the data to principal components (PCs) that describe the variations in the data set and the scores of the

PCs are plotted as output. The PCA is widely used for gelatin authentication due to its capability in

classifying the sources of gelatin into their groups in the score plot. However, it requires pre-processing

of data, which is often time-consuming and tedious. Hence, a faster yet effective chemometrics method

is needed, particularly for gelatin and food authentication analysis [21].

In this paper, an advanced form of FACS, namely, chemometrics FACS (c-FACS) is developed

and applied for authentication of gelatin sources. Chemometrics analysis using PCA is commonly

used in food authentication; however, graph and fuzzy graph-based techniques have never been

reported in the literature. In this study, the fuzzy graph approach is integrated with FTIR spectroscopy

for authentication of bovine, porcine and fish gelatins whereby the FTIR spectra of the gelatins are

represented in a form of FACS graph and dominant wavenumbers for each gelatin are identified.

In addition, coordinated FACS is applied to further investigate the spectra of the gelatin. The FACS

graph of FTIR spectra of bovine, porcine and fish gelatin is transformed into coordinated FACS

to visualize and identify the patterns of the gelatin spectra. The FACS graph, its matrix and its

transformation as a coordinated form of FACS are coded into an algorithm, namely, the c-FACS

algorithm for the purpose.

2. Materials and Methods

2.1. Fourier Transform Infrared (FTIR) Spectroscopy of Gelatin

In this study, the FTIR method is applied on three types of gelatin. They are bovine

(Sigma-Aldrich, St. Louis, MO, USA), porcine (Sigma-Aldrich, St. Louis, MO, USA) and fish

(Sigma-Aldrich, St. Louis, MO, USA) with a total of 81 samples. The gelatin solutions are prepared at

concentrations between 4% (w/v) and 20% (w/v) and analyzed using Spectrum Two FTIR spectrometer

(Perkin Elmer, MA, USA).
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2.2. Fuzzy Autocatalytic Set (FACS)

Generally, a graph G = (V, E) consists of a set of vertices, V = {v1, v2, v3, v4, . . . , vn−1, vn}, and a

set of edges, E = {e1, e2, e3, e4, . . . , en−1, en} [22]. The fuzzy graph introduced by Rosenfeld [7] is a graph

that incorporates fuzziness. Later, Jain and Krishna [2] developed autocatalytic set (ACS) to describe

catalytic interaction between chemical compounds in the form of a graph. The ACS graph signifies

that every catalytic interaction takes place in the system. The formal definition of ACS by Jain and

Krishna [2] is as follows:

Definition 1 ([2]). An autocatalytic set is a subgraph, each of whose nodes has at least one incoming link from a

node belonging to the same subgraph.

In 2010, Ahmad et al. [11] introduced the concept of fuzziness into ACS. They formed a new

concept called fuzzy autocatalytic set (FACS) to model a waste incineration process, whereby the edges

of the graph have fuzzy membership values. The formal definition of FACS by Ahmad et al. [11] is

given as follows:

Definition 2 ([11]). Fuzzy autocatalytic set (FACS) is a sub graph each of whose nodes has at least one incoming

link with membership value µ(ei) ∈ (0, 1],∀ei ∈ E

The FACS graph can be presented in the form of a matrix n× n called adjacency matrix, A = [ai j],

whereby the entries of the matrix are fuzzy membership values. Since then, further properties on

FACS were studied and reported in [12,13,23,24]. Ahmad et al. [23] also showed that any FACS graph

could be induced and transformed to coordinated FACS. Mathematical structures that related to

the transformation involve the formation of transition and Laplacian matrices of FACS. The formal

definition and the procedure with respect to the transition matrix of FACS by Bakar et al. [24] are given

as follow:

Definition 3 ([24]). The transition matrix of FACS of fuzzy graph is P∗, with the entries, P∗(u, v), such that:

P∗(u, v) =















µ(u,v)
dout(u)

if (u, v) ∈ E

0 otherwise
(1)

The out-degree of u is dout(u) =
∑

µ(u, t) and µ(u, v) is the fuzzy value of its edge.

According to Bakar et al. [24], the transition matrix is used in identifying the steady state vector

of a system. Bakar et al. [24] constructed the steady state vector through iteration on P∗(n) until it

generates a steady-state matrix. The rows in the steady-state matrix converge towards a fixed number

and the elements in the row represent the steady state vector or Perron vector. The Perron vector is

used to compute the Laplacian matrix of FACS [13] as follows:

Definition 4 ([13]). Suppose P∗ is the transition matrix for fuzzy graph of FACS with fuzzy value P∗(u, v).

If the graph is strongly connected and aperiodic, then based on Perron Frobenius, there exists a unique

(row) vector, ϕ for which ϕP∗ = ϕ with ϕ(v) > 0 for all v and
∑

ϕ(v) = 1 which is called Perron

vector of P∗ . Let Φ be the diagonal matrix with Φ(v, v) = ϕ(v), then the directed Laplacian of FACS is

L = I − 1
2 (Φ

1/2P∗Φ−1/2 + Φ
−1/2(P∗)t

Φ
1/2) and the combinatorial directed Laplacian of FACS is defined as:

L = Φ −
1

2
(ΦP∗ + (P∗)t

Φ) (2)

where (P∗)t denotes the transpose of P∗ and Φ is the diagonal matrix with Φ(v, v) = ϕ(v).
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Further procedure to transform the FACS graph to coordinated FACS in Euclidean space involves

the modified method from Carmel et al. [25] that is based on combinatorial Laplacian matrix and

followed by solving optimization problem. The definitions of balanced vector and optimal arrangement

for directed graph by Carmel et al. [25] are as follow:

Definition 5 ([25]). Let G(V, E) be a digraph. The balance of node i is bi =
n
∑

j=1
wi jδi j, where w is the weight of

the edges and δi j is target height differences.

Proposition 1 ([25]). Let G(V, E) be a digraph, with Laplacian, L and balance, b. An optimal arrangement y*

is a solution of Ly = b.

The y-coordinates for a directed graph are obtained by solving the optimal arrangement y* [25].

The definitions were then modified by Bakar et al. [13] for FACS graph:

Definition 6 ([13]). Let GFT3(V, E) be a graph of FACS with Laplacian, L and balance, b. Its optimal arrangement,

y*, is the solution of Ly = b, subject to the constraint yt.1n = 0 where balance vector b = (b1, . . . , bn)
t is the

balance of ith node such that bi =
n
∑

j=1
µi j −

n
∑

j=1
µ ji.

The y-coordinates of FACS are obtained by solving the optimal arrangement y* using conjugate

gradient method while x-coordinates are obtained by finding the Fiedler vector of combinatorial

directed Laplacian. All the computational aspects of the procedure are performed using MATLAB.

3. Results and Discussion

3.1. Fourier Transform Infrared (FTIR) Spectra of Gelatin

The FTIR spectra of bovine, porcine and fish gelatins are depicted in Figure 1. The spectra of

the gelatins exhibit very similar patterns at 3600–3200 cm−1 (Amide A), 1700–1600 cm−1 (Amide I),

1560–1335 cm−1 (Amide II) and 1330–670 cm−1 (Amide III) regions.

   




 





 


 

– −1 – −1 –
−1 – −1

 

Figure 1. FTIR spectra of bovine, porcine and fish gelatins.

Similar spectra patterns were also reported in [17,18]. The absorption bands in each Amide region

contain the details and information of various features present in the substances. However, due to the

large similarities of protein structures of the gelatin substances, the FTIR method is unable to identify
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the differences between the gelatin spectra clearly. Hence further analysis using a chemometrics

method is required to identify the differences between them.

3.2. C-FACS

A chemometrics FACS (c-FACS) method is developed and applied to differentiate between bovine,

porcine and fish gelatin spectra. The method involves the representation of the FTIR spectra in the

form of a FACS graph and its adjacency matrix for further analysis to identify the dominant output.

The process of infrared absorption by the gelatin molecule during FTIR analysis is represented

in the form of vertices and edges. Each vertex in V = {v1, v2, v3, v4, . . . , vn−1, vn} represents the

wavenumber (cm−1) and an edge in E = {e1, e2, e3, e4, . . . , en−1, en} is the transitional path of a given

molecule throughout the FTIR analysis (see Figure 2).
 

−1
 

−1

 
 

Figure 2. Fuzzy autocatalytic set (FACS) graph of FTIR gelatin spectra.

In short, the FACS graph describes the flow process and movement of a molecule from one

wavenumber of light to the next wavenumber during the FTIR analysis. The detected amount

of infrared radiation absorbed by the molecule at each wavenumber (cm−1) is represented as the

absorbance value (A) and plotted in the FTIR spectrum [26]. In addition, the presence of impurities

during the analysis is also considered in the FACS graph. The obtained graph is then converted into a

matrix for further analysis. The entries of the matrix are the membership values, µ(vi) of the absorbance

readings (Qi) at each wavenumber. The µ(vi) is called fuzzy absorbance value and defined by:

µ(vi) =



















0 if Qi < 0

1 if max(Qi)

Qi/max(Qi) others

for i = 1, 2, 3, . . . , n, (3)

The fuzzy absorbance valueµ(vi) is substituted as an entry for the FTIR matrix. Further descriptions

of the FTIR matrix are provided by the following definitions.

Definition 7. A square matrix A = [ai j] is called a FTIR matrix such that ai j = µ(vt) is the membership value

of the absorbance reading, Qi for t = 1, 2, . . . , n and the dimension of matrix A is defined as follows:

A =















[ai j]k if n = k2 for some k ∈ N

[ai j]k+p
if n , k2 and n + m = (k + p)2 with p < k and m ∈ N
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In other words, whenever n = k2, then

A =





















µ(v1) µ(v2) . . .

. . . . . . . . .

. . . µ(vn−1) µ(vn)





















k

and whenever n , k2, then

A =









































µ(v1) µ(v2) µ(v3) . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . µ(vn+1) . . . µ
(

v
(k+p)2

−1

)

µ
(

v
(k+p)2

)









































k+p

Definition 8. If the number of data is n and A is not a square matrix (n , k2 and n + m = (k + p)2 with p < k

and m ∈ N), then the entries µ(vn+1) = µ(vn+2) = . . . = µ(vn+m−1) = µ(vn+m) = 0 and they are named

as the ghost entries.

The FTIR matrices are further analyzed using graph dynamic procedures by Ahmad et al. [11] to

determine their dominances. The procedure then computes the eigenvalues and Perron Frobenius

eigenvectors. Several new definitions and theorems are introduced to formalize the procedure.

A reverse transformation matrix is defined since the FTIR spectra are conventionally presented in

descending order of wavenumbers. Thus, the reverse transformation matrix of FACS is needed to

show the equivalence of adjacency matrix and its reverse matrix. The new definitions and theorems

for the transformation matrix are introduced as follows.

Definition 9. The row swap, Rs is an operation whereby two rows in the matrix together with their entries are

exchanged in their positions such that































































r1

r2

r3
...

rn−2

rn−1

rn































































Rs
−−−−−−→































































rn

rn−1

rn−2
...

r3

r2

r1































































In short,

r1 → rn Replace row 1 with row n,

r2 → rn−1 Replace row 2 with row n−1,

r3 → rn−2 Replace row 3 with row n−2,
...

rn−1 → r2 Replace row n−1 with row 2,

rn → r1 Replace row n with row 1.

Definition 10. The column swap, Cs, is an operation whereby two columns in the matrix together with their

entries are exchanged in their positions such that

[

c1 c2 c3 . . . cn−2 cn−1 cn

] Cs
−−−−−→

[

cn cn−1 cn−2 . . . c3 c2 c1

]
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In short,

c1 → cn Replace column 1 with column n,

c2 → cn−1 Replace column 2 with column n−1,

c3 → cn−2 Replace column 3 with column n−2,
...

cn−1 → c2 Replace column n−1 with column 2,

cn → c1 Replace column n with column 1.

Definition 11. The CsRs transformation of matrix A to ACR is a composition of two operations.

A
Rs
−−−−−→ AR

Cs
−−−−−→ ACR

whereby A =

































a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...

an1 an2 . . . ann

































is transformed to ACR =





































ann . . . an2 an1
...

. . .
...

...

a2n

... a22 a21

a1n . . . a12 a11





































. In short, the CsRs

transformation is an operation to switch position of rows to columns simultaneously.

The row swap, Rs, and column swap, Cs, operations are stated as mappings in the following two

lemmas without proofs, respectively.

Lemma 1. Let Mn be a square matrix. The f1 : Mn →Mn is a mapping such that f1(A) = IRA = AR and

IR =





















































0 0 . . . 0 0 1
...

... . . .
... 1

...

0 0 . . . 1 0 0

0 0 1 0 0 0

0 . . . 0 0 0

1 0 . . . 0 0 0





















































(4)

The mapping f1 is called row swapping; i.e., Rs = f1.

Further properties on the row swapping are listed in the following theorems. Their proofs are

also omitted since trivial.

Theorem 1. The row swapping f1 : Mn →Mn is a function.

Theorem 2. The row swapping f1 : Mn →Mn is linear.

Lemma 2. Let Mn be a square matrix. f2 : Mn →Mn is a mapping such that f2(A) = AIR = AC and

IR =





















































0 0 . . . 0 0 1
...

... . . .
... 1

...

0 0 . . . 1 0 0

0 0 1 0 0 0

0 . . . 0 0 0

1 0 . . . 0 0 0





















































(5)

The mapping f2 is called column swapping; i.e., Cs = f2.
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Further properties on the column swapping are presented without proofs as follows.

Theorem 3. The column swapping f2 : Mn →Mn is a function.

Theorem 4. The column swapping f2 : Mn →Mn is linear.

Theorems 2 and 4 lead to the following result.

Theorem 5. The CsRs transformation is linear.

Next, based on Definition 11, Lemmas 1 and 2, transformation of FACS to its reverse is stated in

the following corollary.

Corollary 1. Let A be square n× n FACS matrix. The composition of linear transformations f2 ◦ f1 yields the

transformation of A to its reverse matrix, ACR, such that IRAIR = ACR.

The transformation of the FACS matrix, A yields the reverse FACS matrix, ACR. The relation for

both matrices is presented in the following theorem.

Theorem 6. The eigenvalues of the FACS matrix are the same as the eigenvalues of its reverse.

Proof. By Corollary 1, the reverse of matrix FACS A is ACR = IRAIR.

Notice,

det(IRIR) = det(I2
R) = det(I) = 1

since I2
R
= I

Then, the characteristic equation of ACR, f (λ) is

f (λ) = det(ACR − λI)

= det(IRAIR − λI2
R
) by Corollary 1 and I2

R
= I

= det(IRAIR − λIRIR)

= det(IRAIR − IRλIR) by scalar multiplication of a matrix

= det[IR(A− λI)IR] by distributive property of matrices

= det(IR)det(A− λI)det(IR) by property of determinant, det(AB) = det(A)det(B)

= det(IR)det(IR)det(A− λI) commutativity for scalar multiplication

= det(IRIR)det(A− λI) by property of determinant, det(AB) = det(A)det(B)

= det(I2
R
)det(A− λI)

= det(I)det(A− λI) since I2
R
= I

= det(A− λI) since det(I) = 1.

Hence, characteristic equation for ACR is identical to A. In other words, the eigenvalues of matrix

FACS and its reverse matrix are identical. �

Since ACR = IRAIR = I−1
R

AIR, then A is equivalent to ACR. By Theorem 6, the matrix of FACS and

its reverse produce the same characteristic equation; hence, its respective eigenvalues and eigenvectors

are similar. Consequently, using the FACS graph dynamic procedure, it surely will produce the same

output. In this paper, the reverse matrix is denoted as FTIR matrix, otherwise stated, and is solved

using the modified FACS graphing dynamic procedure.

A new algorithm involving the FTIR matrix is constructed to identify the dominant matrix.

The algorithm contains the FACS graph dynamic and coordinated FACS procedures. The algorithm

is specifically designed in order to facilitate the chemometrics analysis involving FTIR spectroscopy

and is called the chemometrics FACS (c-FACS) algorithm. The c-FACS algorithm is presented in

Algorithm 1.
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Algorithm 1: The c-FACS algorithm

1. Select the preferred variables from a system as inputs.

2. Build FACS graph by representing the variables as vertices, V = {v1, v2, v3, v4, . . . , vn−1, vn} and their links

as edges, E = {e1, e2, e3, e4, . . . , en−1, en}.

3. Describe the membership value of the FACS graph.

4. Determine the n× n adjacency matrix of the graph with the membership values as the entries. For FTIR

matrix, the entries or membership values µ(ei) are described by the fuzzy absorbance values at

each wavenumber.

5. Identify the Perron Frobenius eigenvectors (PFE) of the matrix.

6. The smallest PFE and its corresponding vertices and edges are removed from the system to form

(n− 1) × (n− 1) matrix.

7. Display the dominant output matrix together with its corresponding dominant variables, until 2× 2

matrix is obtained.

8. Calculate the transition and Laplacian matrices to obtain the xy-coordinates. The y-coordinates of FACS

are obtained by solving Ly = b using conjugate gradient method and the x-coordinates are determined

using the Fiedler vector of Laplacian.

9. Plot the obtained coordinates in the Euclidean space.

10. Repeat step 1 to 9 to analyze another sample or system.

Step 2 and 9 have complexity of O(n). Step 4 has complexity of O(n2) and for Step 8, the overall

computation takes O(n3). The others have O(1) complexities. The algorithm is used to analyze the

FACS matrix of the FTIR gelatin spectra for selected regions to determine the dominant wavenumbers

of each gelatin and the patterns of their nodes in Euclidean space. The implementation and analysis on

gelatin using c-FACS are presented in the next subsection.

3.3. C-FACS Implementation and Results

The FTIR spectra of bovine, porcine and fish gelatins are analyzed using the c-FACS algorithm

to identify their dominant wavenumbers and signatures. The gelatin spectra at Amide and

1600–1000 cm−1 (fingerprint) wavenumber regions are represented in the form of a FACS graph

and analyzed as described in the c-FACS algorithm. The FACS graph for spectra at fingerprint

region that contains 601 wavenumbers (1600–1000 cm−1) is shown in Figure 3 with the set of vertices

V = {v1, v2, v3, v4, . . . , v600, v601} and the set of edges E = {e1, e2, e3, e4, . . . , e600, e601}. The vertices in the

graph represent the wavenumbers and the absorbance at each of the wavenumbers is the membership

value of the vertex.

The graph is then converted into the FTIR matrix with dimension of 25× 25 to illustrate all 601

entries or absorbance data in the fingerprint region and further analyzed to obtain the dominant

matrix. The differences between the gelatins are observed based on their dominant obtained output

matrices. The dominant output matrix represents the dominant wavenumbers of each gelatin at Amide

II, Amide III and fingerprint regions. The dominant matrices of each gelatin at the fingerprint region

are listed in Table 1 and the overall results are presented in Table 2.

At the fingerprint region, the differences between the gelatins are observed from the output

matrix (5× 5) such that the dominant wavenumbers for bovine, porcine and fish gelatins are identified

at 1475–1470 cm−1, 1450–1444 cm−1 and 1500–1496 cm−1, respectively. At the Amide II region,

the dominant wavenumbers for bovine gelatin are in the range of 1480–1473 cm−1, while dominant

wavenumbers for porcine and fish gelatins are detected at 1448–1441 cm−1 and 1496–1490 cm−1,

respectively. Dominant wavenumbers for the gelatins at the Amide III region are observed at

810–786 cm−1, 1232–1228 cm−1 and 1252–1249 cm−1 for bovine, 680–678 cm−1, 1077–1071 cm−1

and 1096–1087 cm−1 for porcine, and 844–837 cm−1, 862–853 cm−1 and 1303–1280 cm−1 for fish

gelatin. These results showed that each gelatin possesses distinct and unique dominant wavenumbers,

particularly at the fingerprint and Amide II regions. Further analysis using coordinated FACS is
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performed to examine the pattern and signature of bovine, porcine and fish gelatins at the fingerprint

region and displayed in Euclidean space. The transformation procedure involves the construction

of transition and combinatorial Laplacian matrices based on Equations (1) and (2) to determine the

x-coordinates followed by solving the optimal arrangement y* using conjugate gradient method to

compute for y-coordinates. The x-coordinates of the nodes of FACS are determined by identifying

the Fiedler vector that is the eigenvector associated with the smallest positive eigenvalue of the

Laplacian matrix. The Fiedler vector is obtained by solving the eigenvalue problem and the optimal

arrangement y* representing the y-coordinates are determined using the conjugate gradient method.

All computations are performed using MATLAB. The coordinated FACS of the gelatins exhibits distinct

patterns for bovine, porcine and fish (see Figure 4).
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Figure 3. FACS graph of gelatin spectra for fingerprint region.

Table 1. Dominant matrices and their respective wavenumbers for bovine, porcine and fish gelatins.

Gelatins Output Matrix Wavenumber Region (cm−1)

Bovine



































1.00000.97690.95620.93540.8965
0.71860.71620.71500.71380.7113
0.66870.66380.65770.65410.6468
0.48600.47870.47140.46160.4385
0.30090.30450.30820.30940.3106





































































1600 1599 1598 1597 1595
1575 1574 1573 1572 1570
1550 1549 1548 1547 1545
1525 1524 1523 1522 1520
1475 1474 1473 1472 1470



































Porcine



































1.00000.97590.95300.93240.8721
0.69600.69360.69240.69240.6924
0.65860.65140.64170.63210.5935
0.45720.44870.44030.42940.4186
0.29920.29550.29190.28830.2786





































































1600 1599 1598 1597 1594
1575 1574 1573 1572 1569
1550 1549 1548 1547 1544
1525 1524 1523 1522 1519
1450 1449 1448 1447 1444



































Fish



































1.00000.97770.95670.93560.9146
0.69680.69550.69430.69310.6931
0.66710.66210.65720.65220.6485
0.49260.48390.47520.46410.4517
0.30450.29950.29460.28960.2847





































































1600 1599 1598 1597 1596
1575 1574 1573 1572 1571
1550 1549 1548 1547 1546
1525 1524 1523 1522 1521
1500 1499 1498 1497 1496


































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Table 2. Summary of dominant wavenumbers.

Region Gelatin Dominant Wavenumbers (cm−1)

Fingerprint Bovine 1475–1470
Porcine 1450–1444

Fish 1500–1496

Amide II Bovine 1480–1473
Porcine 1448–1441

Fish 1496–1490

Amide III Bovine 810–786, 1232–1228, 1252–1249
Porcine 680–678, 1077–1071, 1096–1087

Fish 844–837, 862–853, 1303–1280

 

’

Figure 4. Coordinated FACS of bovine, porcine and fish gelatins.

Based on the figure, distinct patterns for bovine, porcine and fish gelatin are observed, particularly

on the right area. The nodes of each gelatin are dispersed at different locations; particularly nodes

for porcine gelatin are clearly separated and located a distance away from nodes of bovine and fish

gelatins. The result indicates that porcine gelatin has a unique feature as compared to other gelatins

since it is at farthest distance, while bovine and fish are closer to each other. The information indicates

that the distance signifies the relationship and characteristic between the variables. The c-FACS

method has successfully identified the differences between the gelatins, particularly non-halal porcine,

based on the dominant wavenumbers’ identification and location of their nodes in the Euclidean space.

The unique and different dominant wavenumbers signify the feature for each gelatin. The performance

of c-FACS is then compared against principal component analysis (PCA). The PCA is a well-established

method in chemometrics analysis. It is usually implemented with the aid of MATLAB and Minitab

software [17,18], and the results are displayed in the form of score and loading plots. The clusters of

bovine, porcine and fish gelatins are observed in the score plot. However, significant wavenumbers for

porcine and fish gelatins failed to be identified in the loading plot (see Figure 5).

The performances of c-FACS and PCA are summarized in Table 3. The c-FACS is found to be

faster, with elapsed time of 7.86 s than PCA (12.86 s) for analysis involving bovine, porcine and fish

gelatin samples at the fingerprint region. Furthermore, the c-FACS was able to identify a particular
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range of wavenumbers as signature for each gelatin, while PCA failed to identify the corresponding

wavenumbers for porcine and fish. Nevertheless, distinct classifications for the gelatins were observed

using both methods, particularly porcine gelatin by c-FACS.

’

 

Figure 5. PCA (a) score and loading plots (b) for gelatins at fingerprint region.

Table 3. Comparison of c-FACS and PCA performances.

c-FACS PCA

Computing time 7.86 s 12.86 s

Observations
Significant and unique signature wavenumbers for

bovine, porcine and fish gelatins.
Significant wavenumbers for bovine gelatin only.

Pattern Classification Distinct classification of gelatins, particularly porcine. Distinct classification of gelatins.

C-FACS on Published Data

The c-FACS method is applied on some published data to demonstrate its capability and efficiency.

Several published data involving food products are analyzed using c-FACS and compared against

PCA used by the respective researchers.

The first analysis involves a dataset of coffee products that is adopted from Briandet et al. [27].

The two types of their coffee products are Arabica and Robusta. The researchers [27] differentiated

the two types of coffee products using FTIR and PCA. The FTIR spectra of 29 samples of Arabica and

27 samples of Robusta were obtained and further analyzed using PCA in their study. However, in this

paper, the spectra of Arabica and Robusta at the 1600–1000 cm−1 region are analyzed using c-FACS.

The FACS graph of the coffee at the 1600–1000 cm−1 region is shown in Figure 6. The vertices

V = {v1, v2, v3, v4, . . . , v600, v601} represent the position of wavenumbers for 1600 to 1000 cm−1 and the

edges E = {e1, e2, e3, e4, . . . , e600, e601} are the light that travels and passes through molecules during the

FTIR analysis.

The graph is then converted into a matrix to determine its dominance and pattern in the Euclidean

space. As a result, the dominant wavenumbers for Arabica and Robusta are identified and presented

in Table 4.

The dominant wavenumbers for Arabica are identified at 1447–1409 cm−1 and 1096–1058 cm−1.

On the other hand, the dominant wavenumbers for Robusta are detected at 1297–1258 cm−1.

These results indicate that each type of coffee bean has distinct and unique dominant wavenumbers.

Furthermore, coordinated FACS shows that the nodes for Arabica are mainly clustered in the right

area while Robusta’s nodes are mainly observed in the left area of the plane (see Figure 7).

The results of the c-FACS are compared against PCA. The PCA score plot of the coffee shows

that Arabica is clustered mainly in the upper right area, while Robusta is clustered in the left area

(see Figure 8).
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– −1

– −1
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– −1Figure 6. FACS graph of coffee spectrum at 1600–1000 cm−1 region.

Table 4. Dominant wavenumbers for Arabica and Robusta.

Updated Matrix Size
Dominant Wavenumbers (cm−1)

Arabica Robusta

4× 4

























1598 1586 1583 1559
1447 1436 1432 1409
1397 1386 1382 1359
1096 1085 1081 1058

















































1598 1583 1575 1559
1397 1382 1374 1359
1297 1282 1274 1258
1096 1081 1073 1058

























3× 3

















1598 1583 1559
1397 1382 1359
1096 1081 1058

































1598 1575 1559
1297 1274 1258
1096 1073 1058

















2× 2

[

1598 1559
1096 1058

] [

1598 1575
1297 1274

]

The PCA results by Briandet et al. [27] also showed distinct clusters of Arabica and Robusta

coffee beans with respect to second and third component scores. However, their PCA method

failed to determine their significant wavenumbers. According to Briandet et al. [27], Robusta coffee

has higher content of caffeine and chlorogenic acid as compared to Arabica, and the bands that

associated with caffeine and chlorogenic acid are in the range of 1750–1550 cm−1 and 1300–1150 cm−1

regions, respectively. Thus, the dominant wavenumber results obtained from c-FACS for Robusta at

1297–1258 cm−1 were in agreement with the range of chlorogenic acid at 1300–1150 cm−1.

The c-FACS method is also applied on a dataset of meat, which is obtained from

Al–Jowder et al. [28]. Three different types of meats, namely, chicken, pork and turkey, were used in

their study. The spectra of the meats were obtained and PCA was used by the researchers [28]. In this

paper, the spectra of the samples at 1600–1000 cm−1 region are analyzed using c-FACS. Its graph is

shown in Figure 9.

The vertices, V = {v1, v2, v3, v4, . . . , v600, v601}, are the wavenumbers and the edges,

E = {e1, e2, e3, e4, . . . , e600, e601}, are the light that travels and passes through the molecules. The graph

is then converted into a matrix to identify its dominance and pattern in the Euclidean space. As a result,

the dominant wavenumbers for chicken, pork and turkey are identified and presented in Table 5.
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Figure 7. Coordinated FACS of Arabica and Robusta coffee beans.
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Figure 8. PCA score plot of Arabica and Robusta coffee beans.

The dominant wavenumbers for pork are clearly identified at 1042–1071 cm−1, and dominant

wavenumbers for both chicken and turkey are identified at 1409–1418 cm−1. In addition, the dominant

wavenumbers for pork are also detected at 1005–1036 cm−1, and turkey showed dominance at

1216–1245 cm−1 in 9× 9 dominant matrix.

Furthermore, coordinated FACS showed distinct locations of nodes for each meat, particularly pork

(see Figure 10).

The results of the c-FACS are compared against PCA. The PCA score plot shows that the meats

are clustered at different locations (see Figure 11), which are in agreement with the report published by

Al-Jowder et al. [28].
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– −1Figure 9. FACS graph of meat spectrum at 1600–1000 cm−1 region.

Table 5. Dominant wavenumbers for chicken, pork and turkey.

Meat Dominant Wavenumbers (cm−1)

Chicken

























1409 1414 1416 1418
1513 1519 1521 1523
1548 1553 1555 1557
1582 1588 1590 1592

























Pork

























1042 1067 1069 1071
1494 1519 1521 1523
1528 1553 1555 1557
1563 1588 1590 1592

























Turkey

























1409 1414 1416 1418
1513 1519 1521 1523
1548 1553 1555 1557
1582 1588 1590 1592

























However, their PCA method failed to determine the significant wavenumbers for the meats.

In addition, the samples for chicken and turkey are often grouped in the same area and overlapped

with each other in PCA score plot [28,29], hence justify the similarity in dominant wavenumbers

obtained for the two meats when analyzed using c-FACS. Furthermore, the dominant wavenumbers

for pork at 1005–1071 cm−1 obtained using c-FACS is in agreement to the dominant wavenumbers of

porcine gelatin listed in Table 2 earlier. Therefore, it provides some sort of signature for pig derivative

in related food products.

The c-FACS and PCA are two different chemometrics methods that have different approaches in

dealing with the dataset. The c-FACS is a fuzzy graph-based method that converts a system to a graph

with fuzzy vertices and edges, and PCA is a statistical method that transforms variables to components

called principal components. The results for c-FACS are presented in the form of dominant matrices

and coordinated nodes, while PCA displayed its result in the form of a score plot. The PCA method has

been around for chemometrics analyses, particularly in food authentication. In this paper, a novel fuzzy

graph-based chemometrics method is introduced and applied for gelatin authentication and the results

show superior performance compared to PCA, with respect to computing time and identification of

significant features. Every sample or system possesses some differences [30]. The c-FACS is efficient in
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determining the signature and feature of samples via their dominant wavenumbers and nodes pattern

in Euclidean space. The unique feature of the sample with respect to the dominant wavenumbers

signifies the identity of the sample. The c-FACS method is able to extract the most dominant and

signature features of each sample through graph representation and eigen-analysis of its matrix.

Thus, c-FACS holds promise as the superior method for authentication purposes.
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Figure 10. Coordinated FACS of chicken, pork and turkey meats.
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Figure 11. PCA score plot of chicken, pork and turkey.
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4. Conclusions

The signatures of bovine, porcine and fish gelatin spectra were successfully identified using

c-FACS. The differences between the gelatins were determined based on the unique wavenumbers

observed for each source of gelatin. The identified wavenumbers indicate that each gelatin has its own

unique signature and feature. Furthermore, coordinated FACS showed that the non-halal porcine

gelatin has a very distinct characteristic and clustered far away from bovine and fish nodes. In this

study, the c-FACS was constructed and applied on system involving Fourier transform infrared (FTIR)

spectrum only. In the future, the c-FACS can be enhanced and applied to different types of fuzziness in

graph in other chemical system. The capability of c-FACS in identifying the significant characteristics of

variables in a dataset was shown and its possibilities for other applications are endless. The differences

between bovine, porcine and fish gelatins were successfully detected and the c-FACS executed faster

than PCA. Furthermore, the consistency of c-FACS is proven when published data were used and

compared against PCA. On top of that, the c-FACS is able to identify the dominant wavenumbers

unlike PCA. Thus, the c-FACS offers another robust method for halal authentication in food and

related products.
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