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An assessment of uncertainty in flood hydrograph features, e.g., peak discharge and flood volume due to variability in the rainfall-
runoff model (HEC-HMS) parameters and rainfall characteristics, e.g., depth and duration, is conducted. Flood hydrographs are
generated using a rain pattern generator (RPG) and HEC-HMS models through Monte Carlo simulation considering uncertainty
in stochastic variables. +e uncertainties in HEC-HMS parameters (e.g., loss, base flow, and unit hydrograph) are estimated using
their probability distribution functions. +e flood events are obtained by simulating runoff for rainfall events using the generated
model parameters.+e uncertainties due to rainfall andmodel parameters on generated flood hydrographs are evaluated using the
relative coefficient of variation (RCV). +e results reveal a higher RCV index for flood volume (RCV� 153) than peak discharge
(RCV� 116) for a 12-hr rainfall duration. +e average relative RCV (ARRCV) index computed for hydrological component (e.g.,
base flow, loss, or unit hydrograph) indicates the highest impact of rainfall depth on flood volume and peak. +e results indicate
that rainfall depth is the main source of uncertainty of flood peak and volume.

1. Introduction

Reliable estimation of flood characteristics is essential for
flood mitigation planning and designing of urban hydraulic
structures [1–5]. Numerous models have been developed to
relate the rainfall event over a catchment to emanated runoff
at catchment outlet [6, 7]. +ese rainfall-runoff models are
mainly used to predict streamflow and forecasting floods [8].

+e prediction of floods using rainfall-runoff models are
associated with uncertainty due to the uncertainty in input
variables (i.e., rainfall), model parameters (i.e., loss), and

model structure [3, 9–14]. +e frequency analysis approach
is generally used for the estimation of the probable maxi-
mum flood (PMF) from the time series of observed peak
discharge [15]. +e inherent uncertainty of floods is con-
sidered as the primary source of uncertainty in such pro-
cedure [16–18]. However, a flood occurs for a probable
maximum precipitation (PMP) event in a catchment having
a favourable hydraulic condition such as saturated soil
moisture condition [19]. +e PMP is estimated by fitting
probability distribution function (PDF) to annual maximum
precipitation (AMP) series. +e PMP values for different
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return periods are used in a rainfall-runoff simulation model
to generate flood hydrographs [20]. +e extreme value
distributions such as log Pearson, log normal, GEV, and
Gumbel are commonly used for fitting AMP time series [21].
Several goodness of fit (GOF) tests are used to find the best fit
distribution, which includes the Kolmogorov–Smirnov test,
Anderson–Darling test, Akaike information criterion, and
Bayesian information criterion [22]. Different GOF tests
often provide contradictory results in ranking best fit dis-
tribution. Besides, various methods are used for the esti-
mation of fitted PDF parameters such as L-moments,
maximum likelihood estimator, generalized maximum
likelihood, Bayesian methods, probability weighted mo-
ments, least square, and many others [23–25]. Estimated
PDF parameter values vary significantly when different
methods are used for the estimation of PDF parameters [26].

Besides, inaccuracy in rainfall-runoff model parameters,
their scale, and other associated errors impart uncertainty in
flood hydrographs [27].+e hydrological model uses various
functions to estimate the water flow direction and infiltra-
tion loss. Not only the different function provides different
flood features but also a slight variation in parameters of the
selected functions significantly affects model runoff volume,
peak, and other features [28–30]. +erefore, the simulation
of floods from rainfall using rainfall-runoff models is always
associated with uncertainty. However, uncertainty in the
estimation of PMF from maximum annual runoff is only
usually evaluated to estimate uncertainty in flood features.
+e uncertainties associated with stochastic variables such as
rainfall, loss, and base flow are often ignored. Recently, a
number of studies have been conducted to estimate floods
using the rainfall-runoff model considering the uncertainty
of effective variables and parameters [31, 32]. +e uncer-
tainty of the rainfall-runoff model can be generally quan-
tified using four approaches [8]: (i) analytical method where
the probability distribution of flood is obtained according to
the variables affecting the flood characteristics [33]. Shrestha
[8] pointed out that this method is rarely used due to its
dependence on the form of the probability distribution
functions (PDFs) used and the nonlinearity in model be-
havior. (ii) Approximation methods such as first-order
second-moment (FOSM) and advanced first-order second-
moment (AFOSM) [33–36]. One of the main advantages of
these methods is their simplicity as they only require the
mean and variance of the input variables. (iii) Sampling
methods such as the Monte Carlo simulation (MCS) ap-
proach [37–45], which provides the probability distribution
of highly nonlinear model output [35, 46] and considers the
most elegant method among the existing techniques used for
uncertainty analysis. (iv) Generalized likelihood uncertainty
estimation (GLUE)method [7, 47–53], which is based on the
philosophy of avoiding the full probabilistic model speci-
fication and search for regional parameters among the
prediction and actual observations [54].

To the best knowledge of the current study, the un-
certainty analysis of flood hydrograph is conducted using
various considerations. +e flood hydrographs of Jamishan
dam catchment located in Iran are generated using the rain
pattern generator (RPG), which is a stochastic rainfall model

and a physically based lumped hydrological model known as
HEC-HMS.+e uncertainties in rainfall duration and depth,
as well as HEC-HMS parameters, are considered for the
estimation of flood hydrographs. +e Monte Carlo simu-
lation is used for the evaluation of uncertainties of input
variables and model parameters. +e selection of this
method is due to its remarkable advantages such as flexible
constrained simulation and the potential to account the
dependence between input variables. Finally, propagation of
uncertainty of input variables/model parameters to the flood
hydrographs is studied.

2. Study Area and Data Description

+e Jamishan basin, located in Kermanshah province, Iran,
with an area of 524.07 km2, is used as the case study area in
the present study (Figure 1). It is a subbasin of the Seymareh
River, which has a 53m long and 268m wide earth-filled
dam (Jamishan dam). Jamishan basin has one rainfall gauge
station (the Songhor station) and one hygrometry station
(Jamishan station) (Figure 1). Data recorded at these stations
are employed to calibrate the HEC-HMS model using eight
rainfall events and validate the flood hydrographs for four
events.

3. Methodology

3.1. Flood Hydrograph Generation. +is study assesses the
uncertainty associated with flood hydrograph features
namely peak discharge and flood volume due to variability of
the rainfall-runoff model (HEC-HMS) parameters and rainfall
characteristics namely rainfall depth, duration, and pattern.
+e rainfall events are generated using a stochastic model
named rainfall pattern generator (RPG), introduced by Shar-
afati and Zahabiyoun [13]. +e HEC-HMS parameters (e.g.,
loss, base flow, and unit hydrograph) are achieved using their
PDFs. Finally, the flood hydrographs are obtained by simu-
lating runoff from rainfall events using the HEC-HMS model
with the generated model parameters. Monte Carlo simulation
(MCS) is used to analyse statistical uncertainty based on the
probability distribution of variables used for model develop-
ment. A hydrologist has widely used the MCs as a robust
approach for uncertainty analysis [55–57].

3.2. RPG Model. +e RPG stochastic rainfall model gener-
ates random rainfall events via MCS sampling procedure.
+e model characterizes a rainfall event in terms of rainfall
depth, duration, and rainfall pattern. It assumes that the
rainfall pattern is dependent on rainfall depth and duration.
To provide the PDFs required for generating the rainfall events,
observed data are divided into several depth classes. Subse-
quently, rainfall events for each depth class are distributed to
some duration classes, and the rainfall events in each duration
class are categorized into rainfall pattern classes. For each depth
class, rainfall duration is extracted using the empirical cu-
mulative probability distribution (CDF) derived from the
rainfall events within that class. According to a given rainfall
depth and duration, the rainfall pattern is generated based on
developed conditional CDF. +erefore, the final output of the
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RPG model is a rainfall pattern. In each model run, the
normalized rainfall patterns are generated to provide rainfall
patterns for the simulated rainfall events. A full description of
the model and its operation are available in the study by
Sharafati and Zahabiyoun [13].

3.3. HEC-HMS Model. Among various rainfall-runoff simu-
lation models, HEC-HMS has evidenced its capacity to sim-
ulate flood patterns effectively [57, 58]. Hence, this model is
employed to generate surface runoff based on randomly
generated rainfall events. HEC-HMS provides a choice for
selection of suitable lossmodels for estimation of infiltration. In
this study, the Green-Ampt method was selected, which in-
cludes five parameters, the initial loss (IL), moisture deficit
(MD), wet suction (WS), hydraulic conductivity (HC), and
impervious area (IA), to estimate the rainfall excess. Subse-
quently, the SCS unit hydrograph, which utilizes the lag time
(LT) parameter, is employed to transfer the rainfall excess to
direct runoff. Finally, the base flow is estimated based on
exponential formulation, which contains three parameters such
as initial flow (IF), recession flow (RF), and recession constant
(RC), to combine direct runoff hydrograph to obtain the flood
hydrograph at the catchment outlet.

3.4. Assessing Uncertainty Associated with Flood Features.
+e length of data (number of events) has a direct impact
on calibrated values of HEC-HMS parameters. To
quantify this source of uncertainty, the HEC-HMS pa-
rameters are considered as random variables. +e un-
certainty related to peak discharge and flood volume due
to variability of HEC-HMS parameters and rainfall fea-
tures are evaluated considering six different cases. A
summary of random variables considered in different
cases is presented in Table 1.

Case 1 considers only the base flow parameters (e.g., IF,
RF, and RC) as random variables. Case 2 and Case 3 consider
the loss parameters (e.g., IL, MD, WS, HC, and IA) and unit
hydrograph (LT) as the stochastic parameters, respectively.
Case 4 is defined to assess the uncertainty associated with
rainfall depth. +e randomness in characteristics of all the
HEC-HMS parameters is considered in Case 5, but the
variability of other rainfall features is ignored. Case 6 is used
to assess the uncertainty associated with flood features due to
the variability of rainfall depth and all the HEC-HMS pa-
rameters. +e impact of rainfall duration on flood hydro-
graph is investigated for three different durations (12 hr,
18 hr, and 24 hr) in all the cases.

+e PDFs of the HEC-HMS parameters are estimated from
eight previously calibrated events [13, 57, 58]. +e PDFs
(uniform distribution function) of the parameters are obtained
based on maximum and minimum values of the parameters
calibrated in those studies, which are IF∼U (0.5, 19), RF∼U
(2.5, 35), RC∼U (0.95, 7.57), IL∼U (0.01, 1.35), MD∼U (0.06,
0.55), WS∼U (200, 2000), HC∼U (0.07, 3.8), IA∼U (1.8, 12),
and LT∼U (2.51, 15.5). Besides, the deterministic values of the
HEC-HMAS parameters are considered as IF� 10 m3s−1,
RF� 35m3s−1, RC� 1.42, IL� 0.3mm, MD� 0.45,
WS� 900mm, HC� 0.22mhr−1, IA� 8%, LT� 8.34hr, and
rainfall depth� 74mm [58]. HEC-HMS parameters generated
using independent uniform distribution of the parameters and
the rainfall events generated using the RPG model are used to
estimate flood hydrographs. Ten thousand flood hydrographs
are generated using this procedure.

To quantify the impact of uncertainty associated with
model parameters and rainfall on flood hydrograph features
(peak and volume), a new index named relative coefficient of
variation (RCV) is defined as follows:

RCVx,y �
CVx

CVy

, (1)
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Figure 1: (a) +e Jamishan River basin, and (b) the digital elevation model of the basin.
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where CVx is the coefficient of variation of flood features,
e.g., peak discharge (x � p) or flood volume (x � v), and
CVy is the coefficient of variation model parameter (y �

IF or RF or RC or IL or MD or WS or HC or IA or LT

or rainfall depth).
To detect the most influencing hydrological parameters

on flood hydrograph features, the average relative RCV
(ARRCV) index for the jth hydrological component (e.g.,
base flow, loss, or unit hydrograph) is computed as follows:

ARRCVj �
􏽘

K

k�1RRCVk,j

K
,

RRCVk,j �
ARCV

Case 4
k,j − ARCV

Case j

k,j􏼒 􏼓

ARCV
Case j

k,j

× 100,

ARCVi,j �
􏽘

W

i�1RCVi,j

W
,

(2)

whereK is the number of rainfall durations, which is equal to
3 (12 hr, 18 hr, and 24 hr) in the present study, and W is the
total number of parameters in the jth hydrological com-
ponent. For instance,W equals to 5 for loss component. +e
most effective hydrological component on flood uncertainty
has the lowest value of ARRCV index.

4. Results and Discussion

4.1.Validation of FloodHydrographGenerationMethodology.
+e four observed flood events (Figure 2) are used to validate
the model-generated flood hydrographs. Hence, specific
number of flood hydrographs is generated using MCs for
each observed rainfall event.

+e validity of flood hydrograph generation method-
ology is investigated by comparing observed flood volume
and peak discharge within the significant band (90% con-
fidence interval) of generated hydrographs (Figure 3). +e
results reveal that flood volumes and peak discharges of all
observed flood hydrographs are within the significant band
of generated flood hydrographs.

4.2.UncertaintyAnalysis of FloodHydrograph. +e influence
of uncertainty of base flow parameters on simulated flood
hydrograph is investigated in case 1. All the hydrological
parameters and rainfall depth are considered deterministic

in this case.+e RCV values of the peak discharge and flood
volume for stochastic base flow parameters (e.g., IF, RF,
and RC) for different rainfall durations (12 hr, 18 hr, and
24 hr) are presented in Figures 4(a)-4(b), respectively. An
increasing trend in RCV values of the peak discharge
against the rainfall duration is observed, which indicates
that uncertainty in peak discharge increases with the in-
crease of rainfall duration. In contrast, no specific pattern
in RCV values of the flood volume is observed. +e highest
RCV value (RCVV,RC � 0.17) is observed for rainfall du-
ration of 12 hr. In general, the lowest RCV for both peak
discharge and flood volume is obtained for IF parameter,
0.004–0.007 for peak discharge and 0.11–0.14 for flood
volume, while the highest RCV is obtained for RC pa-
rameter, 0.005–0.009 for peak discharge and 0.14–0.17 for
flood volume. +e effect of RC on uncertainty of flood
features is found much higher compared to other base flow
parameters.

+e RCV values of peak discharge and flood volume
estimated to assess the impact of loss parameters on flood
features are presented in Figures 4(c)-4(d), respectively. An
increase in RCV values of peak discharge and flood volume
with the increase of rainfall duration is observed. Besides, the
highest RCV values are found for IA parameters (2.36–2.62

Table 1: Description of the cases considered in the present study.

Case
Base flow
parameters Loss parameters Unit hydrograph parameter Rainfall depth

IF RF RC IL MD WS HC IA LT
Case 1 R R R D D D D D D D
Case 2 D D D R R R R R D D
Case 3 D D D D D D D D R D
Case 4 D D D D D D D D D R
Case 5 R R R R R R R R R D
Case 6 R R R R R R R R R R
R� random and D� deterministic.
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Figure 2: Observed hydrographs used to validate the model
generated hydrographs.
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Figure 3: Comparison of observed and generated peak discharges and flood volumes.
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Figure 4: Continued.
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for peak discharge and 2.31–2.40 for flood volume). It means
the impervious area has the highest impact on flood feature
compared to other loss parameters. +e variability of peak
discharge and flood volume due to the uncertainty of the
unit hydrograph parameter (LT) is estimated using RCV
index and presented in Figures 4(e)-4(f ), respectively. A
decrease in peak discharge with an increase in rainfall du-
ration is observed. In contrast, an increase in flood volume
with an increase in rainfall duration is observed. +e results
indicate that uncertainty in unit hydrograph parameter has a
negligible impact on peak discharge for long-duration
rainfalls.

Figures 4(g)-4(h) represent the pattern of flood features
uncertainty due to rainfall variability. +e figures indicate a
fluctuation in RCV values for both peak discharge and flood
volume, where the highest RCV for peak discharge
(RCV� 116) and flood volume (RCV� 153) are observed for
12 hr rainfall duration. In general, the flood volume is found
more sensitive to rainfall depth compared to peak discharge.

In Case 4, all of the hydrological parameters are con-
sidered random, and therefore, it is used to compare the
influence of the hydrological parameters on flood hydro-
graph features. Total of 10000 random hydrographs are
generated based on the stochastic hydrological parameters

IA
MD
WS

HC
IL

0.500 1.000 1.500 2.000 2.500 3.0000.000
RCV

12

18

24
Ra

in
fa

ll 
du

ra
tio

n 
(h

r)

(c)

0.500 1.000 1.500 2.000 2.500 3.0000.000
RCV

IA
MD
WS

HC
IL

12

18

24

Ra
in

fa
ll 

du
ra

tio
n 

(h
r)

(d)

LT

0.800 0.840 0.860 0.880 0.900 0.9200.820
RCV

12

18

24

Ra
in

fa
ll 

du
ra

tio
n 

(h
r)

(e)

LT

0.000 0.020 0.030 0.040 0.0500.010
RCV

12

18

24

Ra
in

fa
ll 

du
ra

tio
n 

(h
r)

(f )

Rainfall depth

20 40 60 80 100 120 1400
RCV

12

18

24

Ra
in

fa
ll 

du
ra

tio
n 

(h
r)

(g)

Rainfall depth

50 100 150 2000
RCV

12

18

24

Ra
in

fa
ll 

du
ra

tio
n 

(h
r)

(h)

Figure 4: +e impact of uncertainty in (a) base flow parameters on peak discharge, (b) base flow parameters on flood volume, (c) loss
parameters on peak discharge, (d) loss parameters on flood volume, (e) unit hydrograph parameters on peak discharge, (f ) unit hydrograph
parameters on flood volume, (g) rainfall depth on peak discharge, and (h) rainfall depth on flood volume for different rainfall durations.
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for this purpose. Similar to cases 1–3, hydrographs are
generated for different rainfall durations. Obtained results
are compared with those obtained in cases 1–3 using
ARRCV index.

Figure 5(a) outlines the ARRCV values obtained for
different hydrological components.+e results show that the
uncertainty in both peak discharge and flood volume is
mostly associated with the loss parameters compared to
other model parameters.

To assess the impact of the hydrological parameters as
well as rainfall depth on flood hydrograph features, those are
generated randomly in case 5 and compared with the results
obtained in case 4 (Figure 5(b)). A significant impact on peak
discharge and flood volume is observed due to variability in
rainfall depth. Overall, the results reveal that loss parameters
have the highest impact on flood features among hydro-
logical parameters, while the base flow parameters have the
lowest impact. Besides, rainfall depth has higher impact on

flood hydrograph features compared to hydrological
parameters.

5. Conclusions

Uncertainties in flood hydrograph features, namely peak
discharge and flood volume due to uncertainty in rainfall
and hydrological model parameters are assessed in this
study. +e flood hydrograph is generated using the HEC-
HMS model from rainfall events generated using RPG. +e
PDF is used to estimate the uncertainty in HEC-HMS pa-
rameters, including the loss, base flow, and unit hydrograph
parameters. +e RCV and ARRCV indices are used to es-
timate the influence of different parameters on flood peak
and volume. +e highest RCV values for flood peak and
flood volume are found as 116 and 153, respectively, for a
12 hr duration rainfall event. +is indicates that flood vol-
ume is more sensitive to uncertainty in the hydrological
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Figure 5:+e ARRCV (in percentage) obtained for different hydrological components (baseflow, loss, unit hydrograph, and rainfall depth).
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model and rainfall parameters compared to flood peak.
Rainfall depth is found to have more influence on flood peak
and volume compared to rainfall duration. +e ARRCV
index calculated for different hydrological parameters also
indicates the highest impact of rainfall depth on uncertainty
in flood hydrograph features.

As limitation of the current research, the proposed
approach is examined on a single basin. However,
employing more basins can provide a better perspective on
the uncertainty analysis of flood features.+us, this issue can
be studied in future studies. Furthermore, several uncer-
tainties sources related to the model configuration, data, and
study period are missed in the current study, which can be
considered to provide robust findings in future
investigations.
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+e data used to support the findings of this study are
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