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Abstract:Apassive controlled ankle foot orthosis (PICAFO)
used a passive actuator such as Magnetorheological (MR)
brake to control the ankle stiffness. The PICAFO used two
kinds of sensors, such as Electromyography (EMG) signal
and ankle position (two inputs) to determine the amount
of stiffness (one output) to be generated by the MR brake.
As the overall weight anddesign of an orthotic devicemust
be optimized, the sensor numbers on PICAFOwanted to be
reduced. To do that, a machine learning approach was im-
plemented to simplify the previous stiffness function. In
this paper, Non-linear Autoregressive Exogeneous (NARX)
neural network were used to generate the simplified func-
tion. A total of 2060 data were used to build the network
with detail such as 1309 training data, 281 validation data,
281 testing data 1, and 189 testing data 2. Three train-
ing algorithms were used such as Levenberg-Marquardt,
Bayesian Regularization, and Scaled Conjugate Gradient.
The result shows that the function can be simplified into
one input (ankle position) – one output (stiffness). Opti-
mized result was shown by the NARX neural network with
15 hidden layers and trained using Bayesian Regulariza-
tion with delay 2. In this case, the testing data shows R-
value of 0.992 and MSE of 19.16.
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1 Introduction
Ankle Foot Orthosis (AFO) is an L-shaped brace that cov-
ered the foot and the calf, which is intended to support
the walking gait. It is usually used by the patient who suf-
fered from a weak ankle due to spasticity. The weak ankle
caused the inability of the patient to lift the foot upwards
(inability of dorsiflexion). In this case, the toe clearance
is not possible to be done by the patient, which resulted
in a high probability of stumbling during walking perfor-
mance [1]. Here the AFO limits the patient’s plantar flexion
by having a rigid ankle joint; hence the toe clearance of the
patient can be ensured [2].

AFOhas beendeveloped and improvednot only for en-
suring the toe clearance but also for optimizing the benefit
to the user’s gait. The improvement especially can be seen
on the AFO joint where it has been changed from a rigid
joint to a flexible joint, and then to an articulated joint [3].
Compare to the other joint; the articulated joint has the
least limitation of plantarflexion because it can freely ro-
tate in 360 degrees. More forward propulsion is expected
whenusing theAFOwithanarticulated joint.However, the
articulated joint itself cannot control the ankle position
and motion by itself. Therefore, it is necessary to include
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additional components such as sensors and actuators in
thedevelopment ofAFOwith the articulated joint. The con-
troller is also required for processing the input from the
sensors and output to the actuators. As a result, the AFO
can fabricate the gait of able-bodied subjects for patient
training purposes [4].

The sensors are used for the detection of the gait
phases and measurement of the controller feedback pa-
rameter. As each phasemay have different controllermeth-
ods or references, the detection of the gait phases became
vital as it determined the controller’s accuracy. A single
or combination of sensors can be used for gait detection.
As shown in previous works, there were two phases of
gait detection using electromyography (EMG) sensor [5–
7], three phases of gait detection using a combination of
accelerometer and rotary encoder [8, 9], and four phases
gait detection using foot switches [1]. Each gait phase num-
ber may have advantages and disadvantages compared to
each other. However, they were compatible with their re-
spective controller.

Previously, an AFO which controlled passively using
a magnetorheological (MR) brake has been developed [5–
7]. Inside the MR brake, there is MR fluid that can solid-
ify according to the appliedmagnetic field with a response
time less than 0.2 s [10]. The brake was installed at the an-
kle joint to produce controllable damping stiffness on the
ankle differently in distinct gait phases. Electromyography
(EMG) sensor was used to measure EMG for detecting the

gait phases such as stance and swing phase. The rotary en-
coder was also used to obtain the ankle position for adjust-
ing the damping stiffness in different ankle positions such
as forward, stand, andbackward. Therefore, the amount of
the damping stiffness is determined based on two sensors,
such as the EMG sensors and rotary encoder using a Fuzzy
Controller (FC) as shown by the overview of the PICAFO in
Figure 1.

As the overall weight and design of an orthotic device
must be optimized, the sensor numbers onPICAFOwanted
to be tuned from two to one. The ankle position is the cho-
sen parameter to be kept instead of the EMGbecause of the
difficulty of placing the EMG sensor accurately that it may
require several trials to get the wanted EMG [11]. A previ-
ous study reported damping stiffness or the ankle torque
calculation by using a function of ground reaction force
(GRF) [12], but no such report on ankle torque function
based on ankle position only. There is a horizontal and
vertical component of the GRF, where the horizontal one
is often omitted in case of static gait (i.e., balancing body)
[13]. During the dynamicwalking activity, the contribution
of horizontal GRF to calculate the ankle torque cannot be
neglected [14]. However, measuring the horizontal GRF re-
quires a bulky multi-axis force sensor, which is not suit-
able for clinical application. Also, this research aims to de-
crease the available sensor numbers instead of increasing
it.

Figure 1: Overview of the PICAFO control system in the previous work [5]
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Figure 2: The fuzzy surface of the PICAFO FC shows the non-linearity
between EMG, ankle position, and damping stiffness

Therefore, the damping stiffness function based on
ankle position is investigated in this research before im-
plementing it in the real application. Be noted that the
damping stiffness in this research is not the subject’s an-
kle torque of the subjects. Instead, the damping stiffness
is determined through trial and error in the previous study
to control walking gait based on ankle position and EMG
using the PICAFO [5]. Figure 2 shows the relationship be-
tween damping stiffness, ankle position, and EMG in the
form of a fuzzy surface. Linear regression is a common
method to find an estimation function of unknown vari-
ables [15]. However, it may be challenging to derive the lin-
ear function of ankle position to damping stiffness based
on the previous works due to the non-linearity of EMG,
ankle position, and damping stiffness, as shown by the
surface fuzzy in Figure 2. The machine learning method
is used to predict the simplified function of the damp-

ing stiffness estimation function, thus reducing the sen-
sor numbers [16]. The technique which is used in this re-
search is the nonlinear autoregressive with exogenous in-
puts (NARX) neural network, which suitable to deal with
thenonlinear systemsuchaswalkinggait [17]. The compar-
ison was done for a different network with different train-
ing algorithms, delay, and hidden layers number to obtain
the appropriate network configuration.

2 Methodology
The steps conducted to obtain the simplified function us-
ing machine learning methods are data collection, data
distribution, data training, data validation, and data test-
ing.

2.1 Data collection and distribution

Thenecessary data collectionwas obtained from the exper-
iment of an able-bodied subject performed walking on a
treadmill with constant speed by using the PICAFO with
a fuzzy controller, which has been presented in the previ-
ous work [5]. The collected data are the EMG, ankle posi-
tion, and the estimated damping stiffness by the fuzzy con-
troller. Like the earlier work, the EMG is presented in the
voltage unit, ankle position is shown in the degree unit,
and the damping stiffness is given in percentage of the
maximum torque following the fuzzy controller. Although
itwas possible to obtain all the possibilities that couldhap-
pen based on the fuzzy controller itself, the data from the
walking experiment was chosen instead. Therefore, the

Figure 3: Data collection and distribution
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data point is narrow to the most likely occurred data dur-
ing the real application.

A total of 1871 data points were collected from 30 con-
secutive walking steps from the experiment (100%). The
data was then distributed to build the network for simpli-
fied the damping stiffness estimation function based on
the ankle position. The 1871 data point was randomized
into the neural network software with a distribution of
1309 data for training the network (70%), 281 data for net-
work validation (15%), and another 281 data for network
testing 1 (15%). Simplified damping stiffness estimation
functionwas obtained from the trained network. Then, an-
other 189 data point from three consecutive walking steps,
whichwere different data, were used to test the trained net-
work onemore time (network testing 2). Figure 3 illustrates
the data collection and distribution.

2.2 Data training, validation, and testing

Data training, validation, and testing were conducted by
using the Neural Network Time Series toolbox, which
available in MATLAB software. Three types of networks
are available such as nonlinear, nonlinear autoregressive

(NAR), and nonlinear autoregressive with exogenous in-
puts (NARX) neural network. The nonlinear network pre-
dicts the output y(t) given delay d past values of the input
x(t). The NAR predicts the output y(t) given delay d past
values of the output y(t). The NARX, which is the combi-
nation of nonlinear and the NAR predicts the output y(t)
given delay d past values of the input x(t) and output y(t)
as shown in

y (t) = f (x (t − 1) , . . . , x (t − d) , y (t − 1) , . . . , (1)
y (t − d))

In this research, the NARX network was the chosen
network because it considers the past information [18]. It
also proofed to be successful in dealing with a nonlinear
system such as TA EMG prediction for enabling dorsiflex-
ion [17] and pre-fall detection system based on EMG [15].
Figure 4 shows the NARX neural network used in this re-
search.

Once the network was chosen, it was modified and
compared to obtain the optimum configuration. The net-
work has two layers of hidden layer and output layer, re-
spectively. Each layer has neurons (n), delay (d), weight
(w), compensator (b), and activation function. In the tool-
box, the output layer only has one n, w, b, and activation

Figure 4: NARX neural network that is used in this research
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function. The input neuron, I1, and I2 are the net sum of
b and scalar product of the previous process with w, as
shown in

I1−n = ([x (t − 1) , . . . , x (t − d)] · w1−n−x) (2)
+
(︀
[y (t − 1) , . . . , y (t − d)] · w1−n−y

)︀
+ b1−n

I2 = (O1−1 · w2−1) + . . . + (O1−n · w2−n) + b2 (3)

Meanwhile, O1 and O2 are the output of the hidden
layers andoutput layers, respectively,which is obtainedby
inserting I to the activation function. The hidden layers ac-
tivation function is a symmetric-sigmoid transfer function,
and the output layer activation function is a linear transfer
function as shown in

O1−n =
2

1 + e−2I1−n
− 1 (4)

O2 = I2 (5)

The toolbox allowed modification on d and n of the
hidden layers. Therefore, the hidden nwas varied, such as
1, 5, 10, and 15, and d was varied, such as 1, 2, 3. Network
training algorithms, such as Levenberg-Marquardt (LM),
BayesianRegularization (BR), and Scaled Conjugate Gradi-
ent (SCG), are used to estimate w and b. LM algorithm up-
dates w and b according to Jacobian jx of performance us-
ing the backpropagation algorithm [19]. BR algorithm is an-
other variant of LM,whichminimizes a linear combination
of squared errors and weights, so it produces a good gen-
eralization of the nonlinear problem [20]. Meanwhile, the
SCG algorithm used a backpropagation algorithm to calcu-
lates performance derivatives concerning the w and b [21].
Mean square error (MSE) and R-squared methods are used
to justify the comparison between the trained network. In
the end, damping stiffness prediction is conducted using
the network, which has been trained in the best configura-
tion.

3 Result
The comparison of network testing 2 with the different
trained network are explained in this chapter. Figure 5
shows the MSE result of different hidden layer numbers,
delay, and training algorithm of output response of the
trained network. The lower MSEmeans the predictions ap-
proaches the target better. Figure 6 shows the R-squared re-
sult of different hidden layer numbers, delay, and training
algorithm of output response of the trained network. The

closer the R-squared to 1, themore similar the prediction to
the target. In the figures, blue theme colored bars are delay
1, orange theme colored bars are delay 2, and green theme
colored bars are delay 3. Brown theme colored lines are the
mean result of each training algorithm for all hidden layers
and delays.

Figure 5: Performance of the network testing 2 shown in MSE

From the MSE results, in general, the Bayesian Regu-
larization has the lowest average performance, with MSE
of 28.45 compared to the other training algorithm. For iden-
tical hidden layer numbers, the lowest MSE is observed
when the delay is 2 in all training algorithms except the
Scaled Conjugate Gradient. For equal delay, the more the
hidden layer numbers, the lower the MSE except for the re-
sult of the Scaled Conjugate Gradient training algorithm.
For instance, a network with 15 hidden layers has lower
MSE compares to a network with ten hidden layers. In con-
clusion, the lowest MSE of 19.16 was observed from net-
work testing 2 data, which was trained using the Bayesian
regularization training algorithm with 15 hidden layers
and delay 2.

Figure 6: The R-squared result from network testing 2

From the R-squared results, in general, the Bayesian
Regularization has the highest average R-squared of 0.988
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Table 1:Weight and bias of the trained network

Layer Neuron (n) Input Weight (w) Bias (b) Layer Neuron (n) Input Weight (w) Bias (b)
1 1 x(t-1) 3.16 0.24 12 x(t-1) −1.13 2.14

x(t-2) −5.13 x(t-2) 0.81
y(t-1) −1.07 y(t-1) 1.50
y(t-2) −0.23 y(t-2) −3.75

2 x(t-1) −1.72 0.05 13 x(t-1) −1.61 −2.39
x(t-2) 0.96 x(t-2) −1.67
y(t-1) 1.44 y(t-1) 2.44
y(t-2) 0.13 y(t-2) 1.93

3 x(t-1) 2.61 0.66 14 x(t-1) −3.28 0.89
x(t-2) −5.31 x(t-2) 0.36
y(t-1) −1.27 y(t-1) −0.11
y(t-2) 0.75 y(t-2) 1.34

4 x(t-1) −2.99 0.26 15 x(t-1) −6.45 0.34
x(t-2) 1.69 x(t-2) 3.09
y(t-1) 1.52 y(t-1) 0.19
y(t-2) 1.31 y(t-2) 0.18

5 x(t-1) −8.62 1.62 2 1 O1 3.36 0.49
x(t-2) 3.71 2 O2 −1.99
y(t-1) −1.01 3 O3 −3.77
y(t-2) 0.99 4 O4 2.67

6 x(t-1) 2.58 −2.14 5 O5 −3.52
x(t-2) 1.14 6 O6 1.19
y(t-1) 0.66 7 O7 3.19
y(t-2) 2.12 8 O8 −3.54

7 x(t-1) −1.85 0.73 9 O9 −3.95
x(t-2) 0.27 10 O10 −0.53
y(t-1) −1.39 11 O11 2.05
y(t-2) 1.27 12 O12 1.29

8 x(t-1) −7.69 −2.05 13 O13 1.52
x(t-2) 3.47 14 O14 −2.35
y(t-1) −0.44 15 O15 5.13
y(t-2) 0.51

9 x(t-1) 0.68 −1.85
x(t-2) 3.65
y(t-1) 0.54
y(t-2) 0.19

10 x(t-1) 3.68 −2.49
x(t-2) 2.29
y(t-1) −0.82
y(t-2) −3.60

11 x(t-1) 3.77 −2.19
x(t-2) 1.05
y(t-1) −1.88
y(t-2) 2.08
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Figure 7: The output response of the NARX neural network with 15 hidden layers and delay 2, which is trained by the Bayesian Training
Algorithm

compared to the other training algorithm. For identical
hidden layer numbers, the highest R-squared is observed
when the delay is 2. For equal delay, the more the hidden
layer numbers, the higher the R-squared. However, a differ-
ent result is found in the outcome of the Scaled Conjugate
Gradient training algorithm, such as in delay 3, where the
R-squared is decreased, the higher the hidden layer num-
bers. From these results, the highest R-squared of 0.992
was observed from network testing 2 data, which was also
trained using the Bayesian regularization training algo-
rithm with 15 hidden layers and delay 2 like the MSE re-
sult. Therefore, this configuration was considered as the
best NARX configuration for predicting the damping stiff-
ness based on the ankle position in this research. Table 1
shows the estimated w and b of the trained networks.

To evaluate the prediction, first, the target points were
defined, which were obtained from data of three consecu-
tive walking steps, as shown in Figure 3. Then, the output
response of the damping stiffness prediction based on the
ankle positionusing the bestNARXconfiguration is shown
in Figure 7. As shown in Figure 7, most of the prediction
outputs followed the target points. However, few off-target
predictions could be observedmainly during phase II with
an error range of −31.52 to 29. The error was the difference
between targets andoutput. For example, in sample 21, the

target was 77.89, and the responsewas 70.6, which resulted
in an error of 7.29. As for phase I, the off-target predictions
could be seen during the end of first phase I. At the end
of the day, the prediction points were united to draw the
output response, which is shown by the solid black line.

4 Discussion
The previous work has shownwork on a PICAFO equipped
with MR brake, in which the damping stiffness was con-
trolled using the Fuzzy controller based on the EMG and
ankle position. Both the parameters serve different pur-
poses, such as EMG for classifying the gait phases while
the ankle position for adjusting the damping stiffness.
Both the signal shows a similar pattern for eachphase. The
EMG has been reported to have active value during phase
I and inactive value during phase II. Meanwhile, the ankle
position is generally increased in phase I and decreased
during phase II. Because of the pattern similarity between
these input parameters, it was possible to reduce the sen-
sor amounts to just one, such as the ankle position only.

The damping stiffness estimation based on the ankle
position only can be predicted using a NARX neural net-
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Figure 8: Comparison of ankle position during 1 step cycle in phase
I and phase II

work trained by the Bayesian Regularization training al-
gorithm with 15 hidden layers and delay 2. The prediction
output has high similarity to the target points with an R-
squared of 0.992 and considerable error with anMSE score
19.16. The errorsmostly happenedduring phase II and only
a few during phase I, if not only a little error. The little er-
ror happens because the data during phase II sometimes
had the same value as the one during phase I, as shown
by the highlighted point in Figure 8. Not only that, but the
gradient might also be the same such as both the high-
lighted point in Figure 8 has a positive slope. The NARX
predictionmay still be confused because of this kind of be-
havior. Therefore, this explains the error that mostly hap-
pened during phase II.

The effect of the off-target prediction is inappropriate
damping stiffness for assisting thewalking gait. The errors
mostly occurred during phase II, where the foot was off the
ground, as illustrated inFigure 1.Here, to avoid inappropri-
ate damping stiffness, aside from further modification of
the current NARX network, an assumption that the damp-
ing stiffness has maximum value during phase II to lock
the foot can be made [1]. Therefore, the damping stiffness
prediction during this phase II was not necessary. Another
suggestion is to use the neural network for predicting the
gait phases using the ankle position data only instead of
predicting the damping stiffness [22]. That way, both the
gait phase classificationanddamping stiffness adjustment
can be done by only using ankle position data. The goal
of decreasing the PICAFO sensors can be realized by then.
Figure 9 shows the improved PICAFO control system.

The new PICAFO system has been tested on the real
situation with a similar scenario to the previous study [5],
where able-bodied subjectwalkingusingPICAFO. It canbe
seen that the PICAFO generates medium to high damping
stiffness during the stance phase and high to low damp-
ing stiffness during the swing phase. The PICAFO with a
trained network prevents the foot drop by applying high
stiffness at the initial swing phase. It also allows natural
initial contact by generating low stiffness at the end of the
swing phase, as shown in Figure 10. The result is similar to
the previously reported study [5]. However, the result can
be achieved with less number of sensors, which is the ro-
tary encoder only.

Other published work on AFO focuses on controlling
the mechanical properties, both in terms of amount and

Figure 9: Improved PICAFO control system
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Figure 10: Practical applications result in implementing the trained network to PICAFO. (a) High stiffness at the initial swing phase prevents
the foot drop; (b) Low stiffness at the end of the swing phase allows natural initial contact

Table 2: Input and output of the control system for passive AFO with MR actuators

Passive
AFO

Input Sensors Output Output
type

Actuator

Svensson
2008 [24]

Ankle position Rotary encoder Damping stiffness Timing MR linear
damper

Naito
2009 [25]

Ankle position, foot
contact

Rotary encoder,
footswitches

Damping stiffness Timing MR rotary
damper

Tanida
2009 [1]

Ankle position, leg
bending moment, GRF

Rotary encoder,
bending moment

sensor, six-axis force
sensor.

Damping stiffness Timing MR brake

Kikuchi
2013 [9]

Ankle position, leg
acceleration.

Rotary encoder,
accelerometer.

Ankle velocity Amount
and timing

MR brake +
Spring

Adiputra
2016 [7]

Ankle position, EMG Rotary encoder, EMG
sensor

Damping stiffness Amount
and timing

MR brake

Chen 2017
[27]

Ankle position, body
orientation, GRF

Rotary encoder,
inertial measurement
unit, force sensor

Ankle position Amount
and Timing

MR brake +
DC motor

Hassan
2019 [26]

Ankle position, GRF Rotary encoder, force
sensor

Damping stiffness Timing MR linear
damper +
Spring

This
research

Ankle position Rotary encoder Damping stiffness Amount
and timing

MR brake
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timing (gait detection) [23]. Examples of mechanical prop-
erties are ankle position, assistive torque, ankle velocity,
and damping stiffness. Appropriate control and timing of
themechanical propertieswill affect the overall benefits of
using the AFO [3]. On the contrary, less attention is given
on sensor amount optimization. Although the less sensor
amount also means less complexity, thus more comfort-
able AFO for the user. If the controlled mechanical prop-
erties or the gait detection method are changed, then the
sensors should also be changed because different require
information.

Table 2 Shows the comparison of this study to other
similar work, which are passive AFOs with MR actuators.
Most of the controlled output is damping stiffness [1, 7, 24–
26]. Ankle position control is only possible with additional
DC motor, as reported by Chen et al. [27]. Meanwhile, an-
kle velocity output is another approach to generate damp-
ing stiffness according to ankle velocity reference [9]. Most
of the output type is timing, where the actuator generates
an amount of output according to particular timing. Mean-
while, the amount-type output means the control system
calculates the output’s amount according to the current
situation. Thus, this type of output requires more informa-
tion and sensor compare to timing-based output, as shown
in Table 2.

Svensson et al. [24] demonstrated passive AFO with
a rotary encoder as the sole sensors for controlling the
timing-based damping stiffness. Meanwhile, this study is
the improvement of PICAFO from a previous study. The
amount and timing of the output were controlled based on
ankle position and EMG shown in Figure 2. The current PI-
CAFO systemwith the trained NARXnetwork developed in
this study controls the amount and timing of the damping
stiffness based on ankle position data only. Therefore, only
a single rotary encoder is necessary. However, the damp-
ing stiffness does not represent the real damping stiffness
that the subject needs. The data is obtained from the PI-
CAFO with a fuzzy controller in a walking experiment of
an able-bodied subject performed awalkingwith constant
speed. The fuzzy controller generated damping stiffness,
which is the optimum damping stiffness obtained through
the trial and error process of walking with PICAFO [5]. Fu-
ture work should investigate the relation of the ankle po-
sition and the real ankle torque, which is calculated using
GRF during walking activity by adopting the methods pre-
sented in this study. By doing so, the PICAFO can assist the
walking gait more accurately but with information from a
single rotary encoder only.

5 Conclusion
Previously, the damping stiffness of a Passive Controlled
Ankle Foot Orthosis (PICAFO) for preventing foot drop had
been successfully estimated based on EMG and ankle po-
sition. Then, in this research, sensor number optimiza-
tion for PICAFO is conducted using neural network meth-
ods. Nonlinear Autoregressive Exogenous (NARX) neural
network is developed for predicting the damping stiffness
based on the ankle position only using data of the pre-
vious work. Several modifications are conducted to find
the best NARX configuration by varying the training al-
gorithm (Levenberg-Marquardt, Bayesian Regularization,
and Scaled Conjugate Gradient), hidden layer numbers (1,
5, 10, 15), and the delay (1, 2, and 3). The best configuration
to estimatewandb is found tobe theNARXneural network
that is trained by the Bayesian Regularization training al-
gorithm with 15 hidden layers and a delay of 2. The out-
put response using the trained network in Figure 7 shows
that the prediction outputs can follow the targets with
MSE of 19.16 And R-squared of 0.992. Despite this work’s
limitations, the finding suggests that the sensor number
of PICAFO can be optimized by using the neural network
method to make the PICAFO control system becomes the
one shown in Figure 9. Future work should use the real
ankle torque data calculated by using GRF information to
train the NARX network. By doing so, PICAFO can give ac-
curate assistance but using data from rotary encoder only.
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