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 Image-based plant disease detection is among the essential activities in 
precision agriculture for observing incidence and measuring the severity of 
variability in crops. 70% to 80% of the variabilities are attributed to diseases 

caused by pathogens, and 60% to 70% appear on the leaves in comparison to 
the stem and fruits. This work provides a comparative analysis through the 
model implementation of the two renowned machine learning models, the 
support vector machine (SVM) and deep learning (DL), for plant disease 
detection using leaf image data. Until recently, most of these image 
processing techniques had been, and some still are, exploiting what some 
considered as "shallow" machine learning architectures. The DL network is 
fast becoming the benchmark for research in the field of image recognition 
and pattern analysis. Regardless, there is a lack of studies concerning its 

application in plant leaves disease detection. Thus, both models have been 
implemented in this research on a large plant leaf disease image dataset using 
standard settings and in consideration of the three crucial factors of 
architecture, computational power, and amount of training data to compare 
the duos. Results obtained indicated scenarios by which each model best 
performs in this context, and within a particular domain of factors suggests 
improvements and which model would be more preferred. It is also 
envisaged that this research would provide meaningful insight into the 

critical current and future role of machine learning in food security. 
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1. INTRODUCTION 
Plant disease detection is a crucial part of precision agriculture that primarily deals with the 

observation of the earliest stages of diseases in plants [1]. As disease outbreaks are also increasingly 

becoming rampant across the globe, the outcome of early disease detection can be used for disease diagnosis, 

control, and damage assessment, especially since some are extremely difficult to control and can lead to 

famine [2-3]. Furthermore, the information can also help with the application of disease-specific remedy or 

chemical applications such as pesticide and fungicide for improved productivity and avert losses that can 

range into billions [4]. From literature, plant disease detection is about measuring the disease incidence, its 

severity, and consequence [4]. Disease incidence is the proportion of plants in a farm or leaves on a diseased 

plant. Severity, sometimes interchanged with intensity, can be expressed as the rate at which the disease area 

of the plant manifest (i.e., relative or absolute area damaged by disease). At the same time, the consequence 

is the outcome in the form of a percentage of yield lost or quality of yield drop in the harvest. 

https://creativecommons.org/licenses/by-sa/4.0/
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Plant disease detection methods are classified into destructive (serology and molecular methods) and 

non-destructive (biomarker-based and plant properties image processing-based techniques included) [4]. The 

use of image-based techniques in precision agriculture has grown tremendously through machine learning-

based methods. This can be attributed to the availability of higher-quality measurements, coupled with 

modern algorithms and an increased possibility to fuse multiple sources of images. These images can either 

be from satellite imagery, sensors, or even cameras positioned in fields. Earlier imaging techniques were not 

cost-effective, which include hyperspectral imaging, fluorescence imaging, spectroscopy, infrared, and even 

x-ray imaging [5-7]. Nowadays, image processing techniques, together with machine learning classifiers, can 

efficiently identify such diseases in color images at advanced levels with excellent precision [7]. Also, 

classification based on plant properties can be mimicked through color, shape, and texture features to 
enhance classification accuracy. The enormous potential for the success of these algorithms has motivated 

further development in herbicide applications [6]. Fuzzy algorithms based on green color analysis of plants 

have allowed for the integration of this knowledge into farm management plans and provided disease 

coverage estimation [6]. Hence, from the applications in precision agriculture listed above, we can easily 

imagine the future of the role of machine learning in agricultural processes, particularly in this aspect of 

diseases associated with plant leaves. 

The machine learning process can either be supervised or unsupervised. Supervised learning is 

where the machine is taught and trained using a well-labeled image dataset of diseased pair. That is the data 

that is already tagged with the correct disease classifications or absence thereof. The higher or larger the 

dataset, the more accurate the machine learns [5]. In practice, two main classification approaches exist, which 

are a deep learning approach and a conventional classifier approach [8-9]. In the DL approach, a DL 
classifier incorporates several layers of information processing stages that are arranged in a hierarchy of 

neural network layers. These layers are then exploited for feature learning, analysis, and pattern classification 

[10]. The DL classifiers can automatically learn 1000s of global feature representations from the whole leaf, 

a region or neighborhood, or a segmented region of interest [10-12]. The examples for these classifiers 

include convolutional neural networks (CNNs), recurrent neural networks (RNNs), and deep neural networks 

(DNNs), among which CNN is most popular and has shown excellent performance for object and image 

classification [9, 13-14]. On the other hand, a conventional classifier analyzes the input labeled data and 

observes the correlation between feature attributes that are extracted from a region of interest within the 

image during training. These features are then used as the learned parameters to predict the subsequent 

unlabeled data during disease classification [6, 15]. There are also many different conventional techniques for 

building machine learning models such as the K-nearest neighbor (K-NN), naive bayes, support vector 

machines (SVMs), and linear discriminant analysis (LDA). However, most research in plant disease detection 
has emphasized the use of the SVM learning algorithm above the other conventional classifiers [7, 16]. SVM 

has been widely used in solving many well-constrained plant disease detection problems in smaller data. In 

more often cases than not, it is highly likely to have a trade-off between limited modeling with SVM and 

representational power with DL. Furthermore, the D-CNN network, even though it has been very much 

around for decades, only recently has just begun its debut in image processing applications for plant disease 

detection [9, 17-19]. 

Most of the current machine learning methods are yet to be robust enough to bridge the gap between 

the real-world methods of plant disease detection, often due to the choice of process or its specificity to one 

symptom [5, 17]. One of the most difficult challenges is that plant species have some diseases with a 

significant degree of similarity and can appear simultaneously on a single plant. This affects not only the 

image processing and machine learning methods but equally human experts as well. Thus, it is paramount for 
the choice of method to be relevant for the target disease detection. 

 

The literature on related works 

Several research studies on machine learning for image-based plant disease classification have been 

reported [1, 7, 20-21]. In summary, a large portion focused on conventional classification techniques such as 

SVM while others on DL. Kaur et al. made a more comprehensive summary of machine learning methods 

applied in different plant cultures. One of the bases for their observations was to identify the most popular 

classifier [3]. Work from Camargo and Smith is one of the earliest proposed works on pattern recognition 

using SVM. Diseased regions such as spots, lesions or stains, and strikes were identified and segmented, and 

features were later extracted and fed as inputs to the classifier [22]. With a dataset of 117 images, the trained 

classifier recorded 93% accuracy. They proved the hypothesis of using texture features as valid 

discriminators for plant disease identification, furthermore, set a precedent for using the extracted features as 
inputs to the machine learning algorithm to identify plant disease visual symptoms. Camargo and Smith, in 

separate research, presented the image registration procedure on how preprocessing (filtering and intensity 

distribution), identification, and segmentation of the disease symptoms regions (ROIs) were made [23]. The 
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features were obtained from hue saturation and value (HSV) color channels of the ROI using co-occurrence 

matrix methodology. Bernardes et al. also used the SVM for the automatic cotton foliar disease classification, 

although the wavelet transform was employed as the feature extractor [24]. The image dataset used contained 

a total number of 420 images of varying scales and intensities. However, the work did not report the methods 

used for the preprocessing, nor did it specify the use of segmentation algorithms. It is in this regard that 

despite having a total of 216 feature vectors, the reported classification rate ranged from 80% to 96.2%. 

Barbedo et al. proposed a pair-wise based classification system where the main features were determined 

using color transformations and relevance histograms [25]. The image dataset was composed of 82 (74 
diseases, four pests, and four abiotic disorders) disorders spread across 12 plant species, with only 15% of the 

total images reported taken under controlled conditions while the rest under real conditions from designated 

experimental fields. The guided active contour (GAC) method was used for leaf segmentation, which 

employed two masks generated based on discoloration. The proposed method reported a low average 

accuracy of 58% across all the species, mainly to the absence of distinct similarities between some diseases, 

sparse image datasets, and lack of preprocessing on input images. Singh and Misra, in a similar approach, 

made use of a genetic algorithm (GA) for the segmentation of diseased regions after first performing 

preprocessing [26]. Both texture and color features were used for the segmentation and subsequent 

identification of disease presence or absence thereof using the SVM classifier. A dataset of 106 captured leaf 

images was split into training and testing. The average classification accuracy was reported at 97% when 

tested on four plant species and five diseases. The research overruled use of shape features such as extent and 

circularity due to shape variation of as diseases evolve into severe stages. The proposed method tailored the 
segmentation and feature extraction process to be less compromising. However, the lack of using a proper 

image dataset reduced the relevance of the work. 

Although works are still reported on the application of the SVM, ensuring simplicity and robustness 

of the segmentation process for diseased ROI seem to be the priority. Dhingra et al. presented a neutrosophic 

approach that utilizes the CIELab color space to detect color homogeneity changes produced by the disease 

symptoms [27]. Also, Barbedo presented a less complicated image processing approach by exerting changes 

to the RGB color channel to form 4 binary masks and then applying Boolean operations on the masks to 

obtain cut-off thresholds [24-25]. Wu et al. proposed an effective segmentation method for RGB diseased 

leaf images based on color transformation, using linear discriminant analysis (LDA) combined with different 

color separation models (Lab, YCbCr, I1I2I3, RGB, and HSV) [28]. The image data (total of 100 images) 

comprises of pictures taken from a farm field captured using a high-resolution digital camera. Based on 
results obtained (average accuracy of 91%), they concluded that the RGB, YCbCr, I1I2I3, and HSV in that 

order were suitable models to employ for proper segmentation of diseased pixels from the images. Xu et al., 

in their proposed work, incorporated a synergetic method by combining basic image processing algorithms 

such as edge detection and morphology for segmentation and extracting features for wheat rust disease 

detection [29]. Conclusively, the ROI segmentation process is exceedingly important when it comes to the 

SVM use case. 

The process of segmentation, however, is not a necessary step when using a DL network. Mohanty 

et al. and Sladojevic et al. both used DL network-based approach for the disease classification using transfer 

learning and gathered images that formed large datasets [30-31]. The former presented perhaps the first 

application of DL to plant disease detection and classification on a relatively comprehensive PlantVillage 

image dataset [30]. It constituted over 54,000 images of 14 different crop species (tomato, potato, apple, 
pepper, etc.) and 26 diseases (healthy and unhealthy). In both works, a deep convolution neural network 

(DCNN) model was developed and trained to perform the disease classification. Using two different sets of 

training which are transfer learning (using AlexNet and GoogLeNet [32]) and training from scratch, they 

achieved over 95% accuracy on both accounts using the dataset. The process of segmentation is overrated in 

these approaches. Another reported work by Xu et al. using the same PlantVillage dataset showed a test 

accuracy of 90.4% using a VGG-16 model trained with transfer learning [29]. Fuentes et al. also applied the 

DL architecture for real-time implementation on tomato crops [33]. All the listed works on DL were trained 

using powerful GPUs, and, except for [30], all employed only transfer learning. 

In reference to the reviewed literature, conventional machine learning classifiers are still in 

consistent use [21]. Out of all the research articles, they summarized that 41% had employed the use of SVM 

while the next popular was at 17% and 14% for NN and K-nearest neighbor (K-NN), respectively. The rest of 

the classifiers combined deep learning included were at 28%. Thus, this wide margin proves the popularity of 
SVM among all other conventional classifiers. Deep convolution neural network gave rise to DL, and its 

current popularity in this context is fast being considered as a benchmark. Hence there is some confusion on 

the type of model most preferred for application in plant disease detection. This often plagues researchers to 

choose among the two, particularly with regards to the amount of computational power, training data and 

required memory for experimental implementations. Despite the progress being made in machine learning 



Int J Artif Intell ISSN: 2252-8938  

 

Machine learning for plant disease detection: an investigative comparison between... (Aliyu M. Abdu) 

673 

algorithms, particularly the DL, it is yet to be as popular in plant disease detection research. However, why is 

that? Are there complications or limitations associated with the DL network? Or, are there certain conditions 

where the use of it is not preferable? If so, what could they be? If DL is superior, why do some researchers 

still prefer to use conventional classifiers such as SVM for plant disease detection? Can the two be combined 

for better classification accuracy? It may be challenging to examine and answer all these questions 

analytically. Nevertheless, we can experimentally compare the conventional method SVM and the DL 

network towards determining the extent or conditions both systems perform best in a plant disease image 

dataset. A comparison of the results could also highlight which will be best suited in specific scenarios. There 

has been a separate quantitative analysis for both networks, particularly SVM. However, to the best of our 

knowledge, no studies systematically investigate their comparisons in this domain. Furthermore, there is no 
consensus among researchers regarding which machine learning method can be applied in different 

conditions to detect plant disease [25]. Thus, this paper analyzed the two exceptional methods, SVM and DL, 

with the objectives to confirm how competitive a shallow approach is (SVM) comparing to the more complex 

one (DL). This goes a long way in providing suggestions on the choice of the method depending on specific 

scenarios. The analysis focuses on disease-pair (healthy and unhealthy) detection but with more emphasis on 

classification. 

 

 

2. RESEARCH METHOD  

2.1.  Experimental set-up and dataset 

All experiments were conducted using MATLAB software incorporated with DL and neural 
network Toolbox (MATLAB®, 2017). The experiments were carried out on an HP® Laptop; Intel Core i7-

7500U processor, a clock rate of 2.70 GHz and 4 Mb Cache; incorporated with NVIDIA® GEFORCE 

940MX GPU running on Windows 10. 

Data acquisition is the first important step in every ML-based plant disease detection method that 

involves acquiring and registering or preprocessing of the leaf images to form an image dataset. However, 

most recent reported works have used available labeled datasets that have undergone preprocessing at various 

levels. These include plantvillage (PV) and digipathos [25, 30]. Their advantages over self-acquired images 

include thousands of labeled image data, multiple varieties of crop species, and different aspects of plant 

diseases at various levels of severity. This warrants the adoption of available datasets by several studies as a 

benchmark image database in this context [34-36]. The PV dataset collects images of diseased and healthy 

plant leaves spread across 38 assigned labels, each with disease pair (diseased or healthy). This dataset of 

images showing early and late blight diseases was considered due to their significant degree of symptom 
similarity. 

Furthermore, both diseases show the same symptoms across the vegetable species (potato, tomato, 

pepper, and eggplant) [37-38]. Early blight and late blight are some of the most severe (destructive) diseases 

that reduce the overall yield of the potato crop, affecting both home gardeners and large productions [37]. 

The late blight symptoms are quite like those of early blight, but far more severe as the entire garden or farm 

filed can be lost within a fortnight [38]. Relevance to this, the utilized crop was potato images labeled as 

either "Early blight," "Late blight," or "Healthy." A total of 2,152 images were used, with some of them 

being of the same leaf taken at different (augmented) orientations to allow for real-world scenarios. The 

dataset used was in color (RGB) format, representing various degrees of disease severity. 

The images were of the same scale size of 256 ×  256 pixels used for the model optimization and 

predictions of both the machine learning algorithms. Furthermore, all the experiments were performed on the 
version of the potato dataset with a segmented background to allow for a proper basis for comparative 

analysis with SVM and DL. Figure 1 shows one example of each image class. The whole dataset was split 

randomly for each class (late blight - LB, early blight - EB, and healthy - HL) into the train-optimize-test  

(T-O-T) scenario to allow for proper assessment of classification accuracy on unseen data. Also considered 

were the augmented samples, which were separately split as well. Those splits were 50-20-30 (50% train, 

20% optimize, and 30% test), and 60-20-20 (60% train, 20% optimize, and 20% test) for both SVM and DL 

as shown in Table 1. This is to allow for experiments on the effect of the amount of training data on their 

accuracy. At each period of training interval, i.e., at the end of every 12 iterations (epoch), mean precision, 

mean recall, and mean F1 score, which is the measure of the test accuracy, are computed. 
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Table 1. T – O – T dataset showing the number of 

samples for each split 
EXPERIMENT 1 2 

CLASS 

T-O-T (SVM & 

DL) 

T-O-T (SVM & 

DL) 

50 – 20 – 30 60 – 20 – 20 

LB (sample 

images) 

500 200 300 600 200 200 

EB (sample 

images) 

500 200 300 600 200 200 

HL (sample 

images) 

76 30 46 91 30 31 

TOTAL 2,152 TOTAL 2,152 
 

 
 

Figure 1. Example of potato leaf image samples from 

the segmented version of the PlantVillage dataset. 

From right: healthy, early blight, and late blight 

 

 

2.2.  Segmentation and feature extraction 

The PlantVillage dataset images used were already registered. Thus, this had conveniently taken 

care of the first stage and narrowed down the second. For the DL network training, the images were fed 

directly as input. Representative disease features needed to be extracted from the images and fed as input to 

the multiclass SVM architecture model with a default linear kernel. Additionally, the RBF kernel classifier 

was also implemented. The most commonly associated feature categories are color, texture, and shape, most 
distinct for each particular plant disease symptom [22]. Though minimal distinctions are observed between 

early and late blight, this, in turn, makes determining the best method for diseased region (ROI) segmentation 

to be quite tricky. Furthermore, the symptoms do not have well-defined edges. Instead, they gradually fade 

into healthy tissue. 

In an attempt to deal with these complex situations for ROI segmentation, various approaches have 

been developed through computer-aided segmentation categorized as 1) manual when the user has to tune 

one or several parameters in the software to achieve the desired segmentation, 2) semi-automatic where the 

user manually initializes the segmentation which then proceeds automatically, or 3) automatic where no 

intervention by the user other than submitting the image to be analyzed. The automatic segmentation method 

used in this study had earlier been presented [39]. The three channels of RGB color space were utilized to 

generate four binary masks that, in turn, are combined into a single segmentation mask. This method works 
well in segmenting the ROI for better feature extraction with precision. Figure 2 shows a sample of the 

segmentation result. 

 

 

  
 

Figure 2. Sample input image (left) and its segmented diseased region (right) 
 

 

Extracting the features can be done statistically using different image processing algorithms 

depending on what features best describe the disease symptoms. While most methods would select color and 

texture, some may choose texture and shape, and others may prefer all three. It is all dependent on what kind 

of features the diseases in focus exhibit. Furthermore, each feature category has its own sets of values, 

usually working well for those specific diseases but likely lacking sufficient generality to be extended to 

other symptom types. It is in this effect that the combination of nine fundamental feature values for color and 

texture commonly used for the cases of blight was adopted for this research. The gray-level co-occurrence 

matrix (GLCM) methodology [40] was employed for the extraction of textural features in the ROI. At the 

same time, the color moment was used for the color feature extraction. Two parameters are usually employed 
in GLCM computation, the relative distance between the pixel pair d measured in the number of pixels and 

their relative orientations 𝜃. For an ROI image 𝑅, let m denote the pixels (𝑥, 𝑦) gray levels and 𝑛 the gray 

level of pixels oriented at 𝜃0 and 𝜃1 with 𝐿 level of gray tones. Where 0 ≤ 𝑥 ≤ 𝑀 − 1, 0 ≤ 𝑦 ≤ 𝑁 − 1, and 

0 ≤ 𝑚, 𝑛 ≤ 𝐿 − 1. From these representations, the GLCM 𝐶𝑚,𝑛 for distance 𝑑 and direction 𝜃 can be given 

as (1) [40]: 
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𝐶𝑚,𝑛,∅ = ∑ ∑ 𝑃{𝑅(𝑥, 𝑦) = 𝑚 & 𝑅(𝑥 + 𝑑∅0, 𝑦 − 𝑑∅1) = 𝑛}𝑦𝑥  (1) 

 

Where 𝑃{. } = 0 if the argument is not true and 𝑃{. } = 1 otherwise. The extracted feature values 

include contrast, correlation, energy, entropy, homogeneity, variance as texture features, and mean, 

skewness, and kurtosis as color features. Refer to (2-7) for the mathematical formulae for the texture feature 

[41]. 

 

𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =  ∑ (𝑖, 𝑗)2𝐶(𝑖, 𝑗)𝑁−1
𝑖,𝑗=0  (2) 

 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =  ∑ ∑ (𝑖𝑗)𝐶(𝑖, 𝑗) − 𝜇𝑚𝜇𝑛 𝜎𝑚𝜎𝑛⁄𝑁−1
𝑗

𝑁−1
𝑖   (3) 

 

𝐸𝑛𝑒𝑟𝑔𝑦 = ∑ 𝐶(𝑖, 𝑗)2𝑁−1
𝑖,𝑗=0  (4) 

 

𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 =  ∑ 𝐶(𝑖, 𝑗) (1 + (𝑖, 𝑗)2)⁄𝑁−1
𝑖,𝑗=0  (5) 

 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =  − ∑ 𝐶(𝑖, 𝑗)log 𝐶(𝑖. 𝑗)𝑁−1
𝑖,𝑗=0  (6) 

 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =  ∑ ∑ (𝑖 − 𝜇)2𝐶(𝑖, 𝑗)𝑁−1
𝑗

𝑁−1
𝑖  (7) 

 

where 𝑁 is the number of gray levels, 𝐶(𝑖, 𝑗) is the (𝑖, 𝑗)th entry in 𝐶𝑚,𝑛. 𝜇 is the mean of 𝐶(𝑖, 𝑗) 

where 𝜇𝑚 , 𝜇𝑛 , 𝜎𝑚 , and 𝜎𝑛 are the average standard deviation of 𝐶𝑚 and 𝐶𝑛 respectively. 

 

2.3.  Classification 
The performance of both SVM and DL architectures on the PlantVillage potato dataset was analyzed 

by training the SVM model on the extracted features on one side and then the DL based on transfer learning 
on the other side. 

 

Support vector machine (SVM) 

SVM is a linear classifier, a set of related supervised learning methods. The input data is linearly 

mapped to non-linearly separated data in some high dimensional space providing excellent classification 

performance [42]. Specifically, it analyzes the input labeled data and observes the attributes (training data) to 

classify subsequent unlabeled data (training data). It does so in a way to maximize the marginal distance (so-

called functional margin) between the two or more intra classes, and those points closest to the marginal line 

are known as the support vectors [42]. Figure 3 shows the underlying architecture of the SVM [43]. The 

division of classes is carried out with different kernels, such as linear and radial basis functions (RBF). From 

Figure 1, the two classes (class 1 and 2) represented in a 2D input space (𝑥 and 𝑦) are separated with a linear 
kernel as the optimal hyperplane in-between the three support vectors. Like neural networks, the 

computational complexity of SVMs does not depend on the dimensionality of the input space, but in SVM, it 

is often difficult to understand the learned function [42]. Though SVM was initially designed to work with 

only two classes, multiclass SVM classification has become widely applicable. Several two-class SVMs can 

be implemented to provide a valid prediction, either by using one-versus-all or one-versus-one. The winning 

class is then determined by the highest output function or the maximum votes, respectively. 

 

 

 
 

Figure 3. The basic architecture of the SVM 
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Deep learning (DL) or deep convolution neural network (DCNN) 

D-CNN are being applied in diverse domains of plant disease detection as part of automated end-to-

end learning [12]. The words "deep learning" (DL) refer to a class of machine learning techniques where 

several layers of information processing stages are arranged in a hierarchy of nodes to be exploited for 

unsupervised feature learning, analysis, and pattern classification. The nodes as shown in Figure 4 (a), also 

known as neurons in the DNN, are mathematical functions that take numerical values for inputs and as 

incoming edges and numerical output values as an outgoing edge [12]. Each neuron in the hidden layer has 

weight connections (𝑤1 , 𝑤2, 𝑤3 , … , 𝑤𝑛) and an activation function 𝑓(… ) as shown in Figure 4 (b), adding 
layers means more interconnections and weights between and within the layers [44]. DL computes the 

features of the observational data hierarchically so that the higher-level features are preserved in the deeper 

layers. They are also defined in terms of those from the surface or low-level layers. Such a hierarchy of 

features is referred to as the deep architecture [45]. An observational data of an image, for example, can be 

represented in many ways (e.g., an array of pixels), but some features make it easier to learn specific tasks of 

interest (e.g., is it an image of a tomato leaf?) from samples. Research in this area attempts to define what 

makes better representations and the best way to learn them. 

 

 

 
 

Figure 4. The basic architecture of a deep learning convolution network (a) layer configuration and  

(b) activations 

 

 

There are two methods of training a DL network for feature learning: training from scratch and 

transfer learning. Training a DL from "scratch" is often a complex and time-consuming process due to the 
deep architecture design [9, 46]. Transfer learning, on the other hand, involves the application of an already 

established architecture that has been successful in other computer vision domain problems and can adapt to 

the problem under consideration [30]. Most popular transfer learning architectures include AlexNet [47], 

VGG Net [48], ResNet [49], and GoogleNet [32], among others. In most cases, the process of transfer 

learning with the AlexNet has become more favorable for optimizing feature representation and reducing the 

limitation of architecture complexity [6]. Hence, this network is used in this research. 

 

Transfer learning with AlexNet 

In the AlexNet architecture, the variants or local receptive fields usually are arranged convolution 

layers succeeded by one or more fully connected layers [32]. Those same convolution layers can also have 

normalization and pooling layers right after them, and traditionally all the layers are initiated or activated 
using the Rectifying linear unit or function (ReLU). The ReLU applies a transformation to the output of each 

neuron and then maps the output to the highest possible value or zero if negative. It adaptively learns the 

parameters of rectifiers, thereby improving accuracy at a negligible extra computational cost. ReLu is given 

as (8). 

 

𝑓(𝑧𝑖) = max (0, 𝑧𝑖) (8) 

 

Where 𝑧𝑖 represents the input of the nonlinear activation function 𝑓 on the 𝑖𝑡ℎ channel. 
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The pooling layer further transforms the output of the activation step by reducing the dimensionality 

of the features map considering the output of the small region of neurons into a single output. The AlexNet 

comprises of 5 convolution layers and three fully connected layers with a softMax layer as the final layer. 

Each convolution layer 𝐶𝐿𝑖 has maps of the same size for the two directions of 𝑥 & 𝑦 of the image given as 

𝑀𝑖𝑥  𝑎𝑛𝑑 𝑀𝑖𝑦 with kernel sizes 𝑘𝑖𝑥  𝑎𝑛𝑑 𝑘𝑖𝑦 respectively. Then, given the number of pixels to skip during the 

traverse at both directions, denoted as 𝑆𝑖𝑥  𝑎𝑛𝑑 𝑆𝑖𝑦. The final output map size could be given as (9-10) [50]. 
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Where 𝐿 denotes the layers.  

The last fully-connected layer right before the SoftMax (fc7) layer tagged "fc8" has three outputs in 

this adopted version equaling the number of classes or labels. The outputs are fed as input to the softMax 

layer, which exponentially normalizes them, thereby giving out a distribution of values across the three 

classes that add up to 1. Figure 5 shows the AlexNet architecture [51]. 
 

 

 
 

Figure 5. The AlexNet architecture 

 

 

The weights of the final fully connected layer fc8 of the AlexNet network were re-initialized. In 

summary, a total of 2 experimental configurations were conducted on each model with T-O-T 1 (50%-20%-

30%) and T-O-T 2 (60%-20%-20%). The SVM was implemented with the two kernel functions, linear and 

RBF. For DL, each experimental run was set to 12 iterations per epochs. Each epoch is the number of 
iterations for the neural network that completes a full-pass over the whole training data. Twelve epochs were 

substantially enough for the learning process to converge well-enough for classification. Furthermore, to 

allow for a valid, fair comparison with SVM, the DL was also constrained to a TOT of 50-20-30, and 

standardized training parameters were used as follows: 

 Solver type: stochastic gradient descent (sgd), 

 Base learning rate: 0.0001, 

 Learning rate policy: step (decrease by a factor of 10), 

 Weight decay: 0.004, 

 Gamma: 0.9, 

 Batch size: 100 

 
 

3. RESULTS 

It was observed that samples with early symptoms of the late blight disease were those that largely 

lead to the slight misclassification in both models. The SVM model was first trained and optimized on the 

60-20-20 TOT distribution. The training data was mapped using the dot or linear kernel space with sequential 

minimal optimization (SMO) for separating the hyperplane. The same procedure was repeated for 50-20-30 

distribution. The classification confusion matrixes are shown in Figure 6. The overall time taken for training 

and validation on the CPU was averagely 40 secs for both cases. The training achieved an average recall rate 

of 92.5% and a mean precision of 92.3%. Extracting the features is the most tasking process for the SVM 

model implementation, but the training and validation processes were comparably fast. Overall, SVM 60-20-

20 achieved an F1-score of 88% and 99% for EB class, 90% and 92% for LB class with linear and RBF 
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kernels. While for SVM 50-20-30, 84% and 97% (EB class), 92% and 92% (LB class) with linear and RBF 

kernels, respectively. 100% rates were recorded for HL class all through. 

 

 

 
(a) 

 
(b) 

 

 
(c) 

 

 
(d) 

 

Figure 6. (a) Confusion Matrix for the SVM classifier on T-O-T 60-20-20 linear, (b) RBF,  

(c) T-O-T 50-20-30 linear, (d) RBF 

 

 

Figure 7 shows the training chart for the DL model for the training period of 12 epochs (white and 

grey bars), which shows the two processes seemingly converge between the 6th and the 7th epoch. Despite 

the training and optimization running on the GPU, the running time was moderately fast given the amount of 

data, precisely 6 mins 46 secs (50-20-30) and 8 mins 12 secs (60-20-20). Regardless, both the TOT validation 

accuracies were at 98.14% (in the case of 60-20-20) and 97.44% (in the case of 50-20-30). Classification 
accuracy for the DL as shown in Figure 8 60-20-20 varied from 98.7% (EB class), 99.7% (LB class), to 

95.7% (HL class). Accuracy for 50-20-30 from 88.2% (HL class) to 100% (for both EB and LB classes). 

Mean F1-scores were 96.1% 60-20-20 and 98.92% 50-20-30. The former F1-score is lower due to the 

resulting lower accuracy of HL classification, as shown in the confusion matrix in Figure 8. 

In addition to T-O-T segments, the SVM was further evaluated on the quality and number of 

features using k-fold cross-validation on 60-20-20 distribution. The correlation of all features to the target 

was first computed. The features were then ranked following their correlation weight: the higher the 

correlation weight of a feature, the more exceptional quality it has as a discriminant for improved 

performance. Then the first subset of all raked features was first used to build and evaluate the classifier, and 

at each subsequent round, the least ranked feature is removed, and the process repeated until only the two 

most ranked features remained. The results are displayed in Table 2. 
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Figure 7. Training and validation progression for the DL network 

 

 

(a) (b) 

 

Figure 8. DL network Confusion Matrix for TOT: 50-20-30 (left), and TOT: 60-20-20 (right) 

 

 

Table 2. SVM performance on different combination and number of feature subsets 
Feature sub-set Accuracy - RBF (100%) Accuracy - linear (100%) 

All 9 95.78 94.93 

Best 8 95.78 94.99 

Best 7 95.56 94.87 

Best 6 96.67 96.21 

Best 5 97.00 96.33 

Best 4 96.22 96.01 

Best 3 95.78 95.22 

Best 2 95.56 94.96 

 

 

4. ANALYSIS AND DISCUSSION 
As results indicated, DL is superior in terms of performance and disease classification accuracy in 

this set-up due to its advanced architecture. However, with less training data (about 16% drop), the 

classification accuracies of EB and LB dropped by 2.8%. These results confirmed the DL and training data 
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relationship for optimum performance, which is the more massive the training samples, the more efficient 

and accurate the DL classifier becomes. The SVM recorded slightly lower classification accuracy than DL. It 

also showed a slight drop by 0.67% in the overall accuracy with reduced training data, which indicated a 

negligible effect compared to DL. A higher result margin was recorded between linear and RBF kernels. 

Accuracy significantly increased by about 5% with the RBF kernel, which indicated its superiority in 

separating the hyperplane. The SVM has a more simplified architecture design and much less 

computationally expensive in both training and classification. This is reflected in the different number of 

feature subsets' results, as shown in Table 2. 
With a small limited amount of 5 qualitative features, the accuracies were higher at 96.33% and 

97% for both linear and RBF kernels, respectively, and even closer to that of DL. Both SVM and DL rely on 

the quality of input data. However, SVM relies more on the crafted or pre-defined features, while the DL on 

the extensiveness of the data. It is essential to highlight that the classification between the EB and LB is the 

true measure of each classifier's performance. Both have achieved 100% classification accuracy in detecting 

whether a leaf is diseased or not. This indicates the relevance of quality characterization features to 

classifying disease symptoms with a high degree of similarity. It would also suggest that the concept of 

image processing-based plant disease detection must not just be about adjusting function weighs, settings, or 

kernels, generally tweaking of some parameters of architecture or model. Instead, engineering the features, 

no matter how complicated it may seem, often provides the best possible solutions for the diagnosis. This is 

inevitable as constant changes in natural phenomena such as temperature and humidity may virally cause 

spawn or the evolution of new plant disease symptoms [37]. Furthermore, handcrafted features allow users to 
properly observe the machine learning (model) behavior towards new patterns, particularly during training 

and optimization of robust models. Thus, many researchers continue to use conventional models such as 

SVM. 

In summary, the results have shown DL requires tremendous building time, training time, higher 

computational power, and training data. When all these requirements are no longer considered as issues of 

limitation, then it would perhaps be the time to give more emphasis than currently being given to the DL. 

Hence, if there is a lack of the necessary computational power, i.e., a GPU, and a well-constrained data (few 

hundred to a thousand), then one might be better off with using the shallow SVM machine learning 

algorithm. On the contrary, however, DL would be a better choice. This experiment has also confirmed that 

among the power of the deep networks, the practical automatic feature extraction of the DL stores the 

features in one of the lower layers. Thus, the preserved features can be harnessed for use with shallow 
machine learning classifiers, such as the SVM. This perhaps answers the question of possibly combining, at a 

certain level, the DL and the SVM for better performance. As an extension of this work, it would be 

interesting to assess these features for classification. 

 

Research focus and improvement suggestions 

While the DL remains the focus of research as of late, its current application within this context is 

mostly towards future applications such as in smartphones, as recent studies would indicate [34]. Even with 

transfer learning, constant fine-tuning is required, such as batch normalization and learning rate stabilization. 

Lack of substantial training data and required computational power are what hinders its practical usage the 

most. Adding more training data and incorporating cloud computing would simplify some of these 

limitations. The complexity of the SVM model is found to be influenced by the segmentation and feature 
extraction processes, and it may well be a complicated and tedious process, particularly with extensive data 

(as encountered in this experiment). Lack of visible boundary edges that determines the separation boundary 

limit between color variant symptom lesions from healthy green tissue is what influence the effectiveness of 

segmentation result and the quality of the engineered features. In this regard, there has not been a 

unanimously acceptable ground truth for the use of segmentation methods. However, with supporting 

literature, best practice suggests color channel manipulation through thresholding is the least complex and 

adaptable to all crop species. The use of GLCM for extraction also weighs in some of the computational cost.  

Nevertheless, with the incorporation of plant pathological inference and fusion of relevant features 

extracted individually from multiple disease symptom regions, machine learning classification can be 

improved. For SVM, the segmentation process can further be enhanced by utilizing disease region expansion. 

Expanding the ROI to cover the blurred region, a part of the healthy tissue right before where disease 

symptoms start to show, capture features corresponding to disease progression information, which can be 
leveraged for improved disease detection. This may also go a long way in capturing the vivid anatomy of a 

disease symptom progression, leading to disease severity and yield loss prediction. 
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5. CONCLUSION  

The objectives of this study were to investigate through experimental approach the performance of 

two popular machine learning models, support vector machine (SVM) and deep learning (DL). The yielded 

results provided suggestions as to which of the two should be preferred for image processing-based plant leaf 

disease detection within the constraints of architectural complexity, computational power, and training data. 

The investigation has concluded that the DL model outperforms the SVM by a somewhat substantial margin 

in terms of classification accuracy with its advanced architecture using deep layers of convolution neural 

network. The observations from this study suggest that the DL is preferred for higher result accuracy when 

large training samples and GPU fitted computers are available with compromise on reducing computational 

complexity. On the contrary, SVM is most preferred for classification using small data and less or moderate 
computation power with no GPU requirement. Furthermore, SVM with an RBF kernel is best preferred, 

particularly when new features need to be observed, tuned, or crafted with less architecture complexity for 

optimum results. This work has offered clarification on the continuous usage of the machine learning model, 

SVM, and at the same time, opened several questions that need further investigation. Further work needs to 

be done to fully establish whether the method of DL on transfer learning should be an alternative to the 

handcrafted features to reduce the burden of manual extraction for the SVM. 
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