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 This paper proposes a stair walking detection via Long Short-Term Memory 

(LSTM) network to prevent stair fall event happen by alerting caregiver for 
assistance as soon as possible. The tri-axial accelerometer and gyroscope 

data of five activities of daily living (ADLs) including stair walking  

is collected from 20 subjects with wearable inertial sensors on the left heel, 

right heel, chest, left wrist and right wrist. Several parameters which  

are window size, sensor deployment, number of hidden cell unit and LSTM 
architecture were varied in finding an optimized LSTM model for stair 

walking detection. As the result, the best model in detecting stair walking 

event that achieve 95.6% testing accuracy is double layered LSTM with 250 

hidden cell units that is fed with data from all sensor locations with window 

size of 2 seconds. The result also shows that with similar detection model but 
fed with single sensor data, the model can achieve very good performance 

which is above 83.2%. It should be possible, therefore, to integrate  

the proposed detection model for fall prevention especially among patients  

or elderly in helping to alert the caregiver when stair walking event occur. 
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1. INTRODUCTION 

Among so many indoor activities of daily living (ADL), stair walk is the one that have a major 

potential and hazardous for people to falls especially elderly. It might cause significant injuries such as hip 

fracture, traumatic brain injuries (TBI) and deaths. The injury Facts 2015 [1] of national safety council’s 

statistical report had reports that there are over one million injuries and 12000 deaths are cause by stairway 

accidents each year. Boyé et.al [2] also had investigated on falls rate of elderly populations in Netherlan ds 

and 409 out of total of 5880 fall-related Emergency Department visit is due to walking up or down stairs. 

Among the indoor activities, falls during stair walking event have the highest percentage to sustain TBI 

which is 52% for women and 61% for men. Not only that, the study from Hwang, et.al [3] had shown that 

elderly are 3 times more likely to suffer from TBI after stair falls when compare to normal fall while walking. 

Another study in Malaysia by Sazlina et.al [4] also shows that 61% of elderly falls indoor and 57% of them 

experienced recurrent falls. The most common indoor places that elderly falls are stairs and bathroom which 

is 27% both. The factor that lead to stair falls can be classify into two which are host -related factors  

and environment-related factors. Host-related factor is factor that contributes by health condition  
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of host [5] for example decline in muscle strength [6-7], ability of posture control [8], cognitive factor [9], 

visual condition [10], and obesity [11]. An environment-related factor is the factors that cause by 

environment of host which include stair architecture design, and stair obstacles such as absence of handrail, 

irregular riser height and object left on stairs. These factors will force the staircase user to use their m aximal 

capabilities to walk up or down the stairs as greater body posture control effort is required. 

Since there is high risk to fall and lead to serious injuries, human activity recognition (HAR)  

is developed as a part of a framework to automatically monitor elderly activities and reduce the burden  

of caregiver. Most of the previous studies [12-14] embedded common machine learning model that integrated 

with shallow and human crafted features extraction approaches which could only able to recognize low level 

activities. Recently, deep learning model has been formulated in HAR related studies [15-19] to overcome 

the limitation of common machine learning approaches. However, to our knowledge, there has been lack  

of research conducted on detecting stair walking event from other activities using wearable inertial sensor via 

deep learning approach as well as detect stair falls. Therefore, a  stair walking detection is proposed to prevent 

stair fall by detect stair walking activities as well as other daily activ ities using inertial sensor and implement 

into the LSTM network. This can reduce the burden of caregiver by alerting caregiver as soon as any stair 

walk activity is detected before any stair fall happen. 

 

 

2. LSTM NETWORK OVERVIEW 

Generally, deep learning is an ideal approach for HAR as the property of deep learning able to solve 

the limitations of machine learning. It able to extract features automatically, recognize complex high -level 

activities and reduce computational cost. LSTM is a composition from Recurrent Neural Network (RNN)  

and it is capable of capturing long term dependencies with a lot of memory units called cells [20].  

Figure 1 shows LSTM cell. 

 

 

 
 

Figure 1. LSTM cell [21] 

 

 

LSTM network have lot of memory cell composed in it and this large stack of memory cell property 

enable it to learn complex input. Inside a memory cell unit consists an input gate , output gate  and a forget  

gate  as in Figure 1. All these gates unit will regulate the content of memory cell that flow in and out  

of the cell. A memory cell  will connected to another cell. The forget gate in memory cells make LSTM 

smart enough to decide what to erase from memory and keep only relevant data [22-23]. It removes 

unnecessary data memory from previous state by multiply with previous cell state  

as (1) where W is rectangular input weight matrices; b is the bias vector and x is the input vector. 

 

 (1) 

 

Input gate is function to add new input to present cell state. (2) will decide which values to be 

updated and (3) will create vector for new candidate values. 

 

 (2) 

 

 (3) 
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The present cell state is calculated by using (4) 

 

 (4) 

 

A sigmoid layer is run to decide which parts of cell state is going to output. The cell state is tanh  

and multiplies with sigmoid gate output by using (5) and (6). 

 

 (5) 

 

 (6) 

 

 

3. EXISTING WORKS IN WEARABLE SENSOR BASED HAR 

There are many fall detector that were developed to solve the fall problem on elderly. The study  

of Ozdemir, et.al [24] had also successfully distinguished falls from ADLs that can cause high acceleration 

body part such as jumping, sitting down suddenly and running. 6 machine learning approach which  

are k-Nearest Neighbor (k-NN), Least Square Method (LSM), Bayesian Decision Making (BDM),  

Support Vector Machine (SVM), Artificial Neural Network (ANN) and Dynamic Time Warping (DTW) was 

use as the classifier and the performance of each classifier is compare. In terms of the required training time,  

the classifiers can be sorted as BDM, LSM, DTW, k-NN, SVM, and ANN in increasing order, whereas in 

term of the testing time, the order is ANN, SVM, LSM, BDM, k-NN, and DTW. The accuracy has achieved 

above 95% for all classifier. 

Steven Eyobu et.al [18] had proposed a human activities recognition ranging from walking, sitting, 

falling, climbing and stair walking. LSTM neural network is proposed in the model to solve the issue that 

difficulty in discriminate amongst high similarity features. The proposed approach is Deep Recurrent Neural 

Network (DRNN). This approach has an advantage in high throughput which is short recognition time  

and able to discriminate activities that have almost similar features. 

There is also few works that able to recognize complex instrumental activities daily life (ADL).  

For example, the A-Wristocracy wrist worn sensing recognition [20] that proposed by Vepakomma , et.al.  

The proposed A-Wristocracy recognition system are able to recognized fine-grained 22 indoor activities by 

multi-modal sensors which consists of accelerometer, gyroscope, ambient location context sensing  

and atmospheric environmental sensors. The 22 complex f ine-grained activity is contexts into various classes 

which are locomotive, semantic, transitional and postural. All the test accuracy for various number  

of neurons in hidden layers had achieve testing accuracy above 84%. Panwar et. al [16] also had proposed  

a HAR recognition model using Convolutional Neural Network (CNN) to recognize 20 small actions in 

making a cup of tea. A single wrist worn tri-axial accelerometer is used in the study and detect with extension 

and flexion of forearm, rotation of forearm and rotation of the wrist about long axis of forearm. This study 

has achieved a performance accuracy of 99.8%. 

 

 

4. RESEARCH METHOD 

The workflow of this study is comprises of five steps which are data acquisition,  

data pre-processing, LSTM network architecture implementation, dataset training and testing,  

and performance evaluation. All the steps will explain further in the following subsections. 

 

4.1.  Data acquisition 

Gait Up Physilog 5 Inertial measurement sensor unit as in Figure 2 is used in this study.  

This wearable inertial sensor sensing abilities includes 3D accelerometer, 3D gyroscope and barometric 

sensor. However, only 3D accelerometer and 3D gyroscope are used in this project. The data was collected 

by placing the inertial sensor on subject’s chest, wrists, and heels. The sampling frequency of Physilog  

5 sensor is 128 Hz. 

20 subjects were involved in this study and each subject was asked to perform few daily living 

activities. The daily living activities is including stair walking, walking, sitting, standing and laying down 

01as in Figure 3. All the activities were performed continuously at a  subject comfortable speed. Th e same 

activity set was repeated by each subject for 3 times at different stairs. 
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Figure 2. Gait up physilog 5 inertial measurement sensor unit  

 

 

 
 

Figure 3. Daily living activities, (a) Walking, (b) Standing, (c) Stair walking, (d) Laying down, (e) Sitting 

 

 

4.2.  Data pre-processing 

Before the data is used for training, the collected raw data is required to undergo preprocessing.  

The collected raw data was first labelled. Walking is represented by “1”; Stair walking is represented by “2”; 

sitting is represented by “3”; lying down is represented by “4”; and standing is represented by “5”. After that, 

a windowing technique is applied through the labelled data to take small subset through this large dataset. 

The window sizes applied to the dataset was 0.5 sec, 1 sec, 1.5 sec and 2 secs. The data after the windowing 

was then named as X and the labeling named as Y. Data X and data Y was divided into three parts which  a re 

90 % for training set and 10% for test set. Training set was used to fit the LSTM network model and testing 

set was used to evaluate the final LSTM network model. 

 

4.3.  LSTM network architecture implementation 

LSTM network was implemented using deep learning toolbox of MATLAB 2018a. Figure 4 shows 

the framework of LSTM network. There will have several layers in the LSTM network which include an 

unknown n layer of LSTM hidden unit layers, fully connected layer, softmax layer and classification layer.  

 

 

 
 

Figure 4. The framework of LSTM network 
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The LSTM network training setting is as Table 1. The optimizer solver used is Adam which decay 

rates can be specified. Gradient threshold is set to 1 so that can prevent gradient from exploding. The initial 

learning rate is set to 0.01 and drop in period of 20. This is to allow the network have large change in  

the beginning of the training and decrease the learning rate over the epochs to have smaller tuning changes a t  

the training later. The regularization is set to L2 to control the model capacity and re duce overfitting  

of the model. The input signal dimension is 30 and the output dimension is 5. 
 

 

Table 1. LSTM network training setting 
Settings Details 

Output Layer Activation Function Softmax 
Optimizer Solver Adam 

Gradient Threshold 1 

Max Epochs 30 
Initial learning rate 0.01 

Regularization L2 

Input signal dimension/ feature dimension 30 
Output dimension/ class 5 

 

 

4.4.  Data training and testing 

As mention in the subtopic before, there were 5 sensors wear at each subject’s chest, wrists,  

and heels and each sensor will have 6 features (tri-axial accelerometer and tri-axial gyroscope).  

Thus, the total features dimension of the dataset was 30. The input data sequence will directly load into  

the layers for training purpose without feature extraction. This is due to the deep learning approach has 

automatic feature extraction property. 

 

4.5.  Performance evaluation 

The performance will be evaluated using confusion matrix plot in Table 2 that consist of two 

dimensions which are actual and predicted. True positive, true negative, false positive and false negative can 

know from the confusion matrix. 
 
 

Table 2. Confusion matrix plot 
Actual 

Predicted 

 Positive Negative  

Positive True Positive False Positive Positive Predicted Value = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

Negative False Negative True Negative Negative Predicted Value = 
𝑇𝑁

𝑇𝑁+𝐹𝑁
 

 Sensitivity = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 Specificity = 

𝑇𝑁

𝑇𝑁+𝐹𝑃
 Accuracy = 

𝑇𝑃 +𝑇𝑁

𝑇𝑃 +𝑇𝑁+𝐹𝑃+𝐹𝑁
 

 

 

5. RESULT AND DISCUSSION  

As mentioned in the previous chapter, there are several parameters need to be varied in searching  

an optimum walking detection model which produced highest accuracy value. The parameters are sliding 

window size, sensor deployment, number of hidden cell unit and LSTM architecture (either single layered or 

double layered LSTM). The evaluation process is divided into several stages. 

 

5.1.  Window size varied (stage 1) 

At the first stage, the window size is varied while fixing the sensor deployment which used input 

data from all attached sensors on single layered LSTM networks with 100 hidden cell units.  

Table 3 summarizes the LSTM network models accuracy of varying window size while fixing other 

parameters. The results obtained shows that window size of 2 seconds give the best performance when 

compared to the window size of 0.5 seconds, 1 second and 1.5 seconds. Thus, window size of 2 seconds was 

used for the next stage. 
 
 

Table 3. Summary of LSTM network models accuracy of varying window size  
Window Size (seconds) Testing Accuracy (%) 

0.5 74.0 

1.0 76.1 
1.5 77.7 
2.0 79.4 
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5.2.  LSTM architecture varied (stage 2) 

In the second stage, the LSTM network architecture is varied while fixing the sensor deployment 

which used input data from all attached sensors and also fixing the window size at 2 seconds.  

Table 4 summarized the LSTM network model accuracy of 2 seconds window size for all sensors data 

deployed in different architecture. The results show that the testing accuracy has increase with the increase 

number of LSTM hidden cell unit. Also, double layered LSTM model have higher accuracy than single 

layered LSTM as demonstrated in [25]. This is because the capacity of LSTM network is increase and train 

in a deeper way when the number of LSTM layer is increase. Among the trained LSTM architecture,  

double layered LSTM network with 250 hidden cell units per layer produced the  best performance.  

Thus, double layered LSTM network with 250 hidden cell units per layer is used in the next stage.  

 

 

Table 4. Summary of LSTM network models accuracy of varying architecture  
 LSTM Layer Single Double 

Architecture Number of LSTM Hidden Cell Unit per Layer 100 250 100 250 
Accuracy (%) All Sensors 79.4% 80.6% 92.6% 96.5% 

 

 

5.3.  Varying input sensor data (stage 3) 

In the third stage, the sensor input data used is varied while fixing the window size at 2 seconds  

and LSTM network architecture at double layered with 250 hidden cell units per layer. Table 5 summarized  

the LSTM network models accuracy of different sensor at 2 seconds window size with double layered 

architecture of 250 hidden cell units per layer. The result also shows that the LSTM network model that feed 

with all sensor data have greater performance than single sensor data. It can be interpreted that  

the performance of LSTM network for stair walking detection is affected by the number of sensor data that 

fed into network. The more input data, the better the LSTM performance which is same as stated in [26]. 

It can also be interpreted that sensor data from chest, right heel and left heel majorly contribute in 

producing great accuracy for stair walking detection while right wrist and left wrist provide the least 

performance. This might due to the hand movement is unpredictable and in randomize direction while 

performing the activities of daily living. Thus, the produced sensor data from both wrists is very difficult to 

discriminate between an activity to another activity. 

 

 

Table 5. Summary of LSTM network models accuracy for each single sensor 
Sensor Chest Right Heel Left Heel Right Wrist Left Wrist 

Testing Accuracy (%) 87.8% 87.7% 89.7% 86.6% 83.2% 

 

 

5.4.  The best LSTM network  

The best LSTM network model is the double layered LSTM model with 250 hidden units per layer 

which showed the best testing accuracy for dataset with 2 seconds window size. The testing accuracy 

obtained is 95.6% as in Figure 5 and the error rate is 3.5%. From the same confusion matrix obtain ed,  

we also can know that the sensitivity to detect stair walking event (class 1) correctly is 97.9%. Only 1 out  

of 424 and 8 out of 424 is classifying wrongly as standing (class 4) and walking (class 0) respectively.  

The positive predicted value is 97% which have 1 out of 188 from standing event and 12 out of 442 from 

walking event had wrongly detected as stair walking event. 

There is none of the Laying down event (class 3) and sitting event (class 2) wrongly classify into it. 

In terms of specificity, a ctivities lying down, sitting, standing and walking have 97.3%, 95.1%, 94.1%  

and 96.6% respectively. This means that, there is also have a good performance in detect activities other tha n  

stair walking correctly. For negative predicted value, activities lying down, sitting, standing and walking  

have 96.3%, 96.6%, 95.2% and 96.6% respectively. All the activities that other than stair walking  

do not have much wrong classify from other classes into it. 
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Figure 5. Confusion matrix that obtained from the best LSTM network model 

 

 

6. CONCLUSION 

In conclusion, a set of tri-axial accelerometer and tri-axial gyroscope data was collected and new 

activities dataset was created for model training and testing. Deep structured LSTM network models was 

implemented to detecting stair walking event as well a s other activities of daily activities. Based on  

the results obtained, it shows that the window size of 2 seconds gives the best performance when compared 

to 0.5, 1, and 1.5 seconds. In the second stage, the result shows that the testing accuracy increase  with 

number of hidden units and double layered LSTM give better performance than single layered. The best 

accuracy is at double layered LSTM with 250 hidden units per layer which is 96.5%. From the third stage, 

the testing accuracy of each single sensor have achieved above 83.2%. It also shows that the stair walking 

event has higher dependency on left heel, chest and right heel. This LSTM model can be further implemented 

into an automated stair walking detection system that can detect and alert the caregiv ers when stair walking 

event occurs on elderly or patient. The burden of caregivers can be reduced and stair falls on elderly or 

patient can be prevented by using this trained model. 
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