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Abstract-In this paper, a characterization setup for 

transmitarray unit cell analysis is designed in CST studio using 
rectangular to square waveguide transition for X-band 
applications. A wideband transmitarray unit cell is designed 

using split ring resonator and unit cell simulations show wide 
impedance matching bandwidth of 43.7%. In this simulation, 
the waveguide transition length is varied to reduce the 

reflection coefficient magnitudes below -20dB. Then, the square 
cross section area of waveguide is made variable and cutoff 
frequency variation over 4GHz is illustrated. Finally, the model 

for real time test setup is simulated along with the 
transmitarray unit cell and the results show high transmission 
magnitude of -0.23dB. This setup can also be used for other 

frequency selective surface unit cells characterization.  

I. INTRODUCTION

The transmitarray (TA) antennas belong to the family of 

high gain antennas having the advantage of low profile, no 

source blockage as in reflectarray antennas and the beam 

switching capabilities. The research work on transmitarray 

antennas started in in 1968 with the renowned HAPDAR 

design [1]. Subsequently, it has taken the form of lens 

antennas [2-13] due to its phase convergence and 

compensation capability. It also enhances the directivity of 

space-fed transmitarray by generating the pencil beam 

radiation pattern. Previously, the research work was focused 

mainly towards the transmitarray antenna designs using 

receiver-transmitter type configurations in which three layers 

were mostly used [11, 14-20]. The bottom layer in these 

configurations works as a receiver layer and the top most 

layer as the transmitter layer. However, the middle layer 

provides the isolation as well as phase delay required for 

phase compensation in each unit cell. Moreover, the 

complexity of complete transmitarray design can increase 

due to the involvement of vias and layer alignment issues. 

The involvement of active devices in the middle layer can 

also increase the causes of errors manifolds. Frequency 

selective surface (FSS)-based multilayer transmitarrays are 

being designed [6, 21-28] to reduce complexity, with high 

transmittance magnitude and can cover full 3600 phase range. 

Waveguide sets are required for characterization of FSS-

based TA unit cell using a 2-port vector network analyzer. 

However, the waveguides available have rectangular and 

circular shapes which is not directly compatible with square 

TA unit cell. Due to this, we have designed rectangular to 

square waveguide transition.  

In this research work, we will design the frequency 

selective surface-based transmitarrays unit cell. The 

simulation results of TA unit cell using rectangular to square 

waveguide transitions will be analyzed. The parametric 

analysis using waveguide transition length and square cross 

section area is performed. The E-field two-dimensional plots 

along the waveguide transition is illustrated. Lastly, s-

parameter results before and after the placement of FSS 

layers will be analyzed. 

II. UNIT CELL AND RECTANGULAR TO SQUARE WAVEGUIDE

TRANSITION DESIGN 

    The unit cell design for frequency selective surface based 

transmitarray antenna is made at 10GHz. In this design, we 

have increased transmittance bandwidth by introducing a 

Split Ring Resonator (SRR) based TA unit cell. The 

complete dimensions of SRR unit cell are shown in Figure 1. 

The substrate used for TA unit cell design is FR4 with 

relative permittivity of 4.4 and thickness of 0.5mm. The 

thickness of Copper strip is 0.035um and strip width is 

0.4mm for high transmittance magnitudes.    

Figure 1. Split ring resonator-based TA unit cell Design at 10GHz 

  The rectangular waveguide standard WR90 specifications 

are used for simulations. For WR90 rectangular waveguide, 

the cutoff frequency is 6.7GHz. In order to match the cutoff 

frequency, the side length of square section of waveguide 

transition is selected to be 22.86mm. The material used for 

waveguide transition is Lossy Aluminum with high 

conductivity of 3.56 x 107 S/m. Top, bottom and side views 

of waveguide transition with the complete dimensions are 

shown in Figures 2(a), (b) and (c), respectively. The square 

section is matched with the standard WR90 rectangular 

waveguide section using CST loft technique.  
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  (a)    (b) 

  (c) 

Figure 2. (a) Rectangular waveguide section (b) Square waveguide section 

for unit cell (c) Side view for waveguide transition illustration 

      In order to match the square waveguide section with the 

unit cell dimensions, the square cross section area can be 

varied. By this way, the dimensions as well as cutoff 

frequency of the waveguide transition can be matched. 

Figure 3 shows the waveguide transition with reduced square 

side length of 15mm to match the unit cell dimensions at 

10GHz. In this simulation, the square cross-sectional area is 

kept variable to see its effect on cutoff frequency.  

Figure 3. Variable square waveguide section for cutoff frequency variation 

   The cutoff frequency of WR90 rectangular waveguide is 

6.7GHz with dimension “a” value of 22.86mm. For the final 

measurement setup, we will use the same side length “a” of 

22.86mm as shown in Figure 4. This will match the cutoff 

frequency with the WR90 waveguide section. The SRR 

based TA unit cell as shown in Figure 1 is placed in between 

the two transitions.  

Figure 4. Waveguide transitions with the unit cell measurement setup 

III. RESULTS

   The s-parameter magnitude and phase plots for X-band (8-

12GHz) are shown in Figures 5 and 6, respectively. The 

results show high S21 magnitude of -0.37dB, S11 magnitude 

below -20dB and wide impedance matching bandwidth of 

43.7%. 

Figure 5. Transmittance magnitude of SRR unit cell 

Figure 6. Transmittance phase of SRR unit cell 

   The effect of changing the waveguide transition length 

over the reflection and transmission magnitude is shown 

below in figure 7 and 8 below. By increasing the length of 

waveguide transition, we see that the transmission magnitude 

increases and the ripples in both the plots reduce to a 

Authorized licensed use limited to: UNIVERSITY TEKNOLOGI MALAYSIA. Downloaded on April 29,2021 at 04:44:57 UTC from IEEE Xplore.  Restrictions apply. 



maximum value of 56.25mm, at which the all the S11 values 

are below -10dB. 

Figure 7. S11 Magnitude plots for varying transition lengths 

Figure 8. S21 Magnitude plots for varying transition lengths 

   The cutoff frequency variation can be seen with the square 
side length variation in the S21 and S11 magnitude plots in 
Figures 9 and 10, for the variable square section model 
shown in Figure 3. The cutoff frequencies for square 
waveguide side length values of 15, 17, 19 and 21mm are 
shifted to 7.34, 8.02, 8.93 and 10.14 GHz, respectively. 

Figure 9. S21 magnitude plots for variable square waveguide section  

Figure 10. S11 magnitude plots for variable square waveguide section 

   The s-parameter magnitude and phase plots for the final 

measurement setup (Figure 4) are given in Figures 11 and 12. 

From the Figure 11, high transmission magnitude of -0.23dB 

and very low reflection magnitude of -26.44dB is obtained at 

center frequency of 10GHz. This illustrates the high 

transmittance of split ring resonator-based transmitarray unit 

cell.  

Figure 11. s-parameter magnitude plot of test setup 

Figure 12. s-parameter phase plot of test setup 

   The E-field propagation along the waveguide transitions-
based back-to-back setup with the SRR transmitarray unit 
cell is shown in Figure 13. The maximum E-field values can 
be seen at both the port ends. In the middle, the E-field is 
distributed with lower magnitudes due to larger waveguide 
cross-sectional area and unit-cell between two rectangular to 
square waveguide transitions. 

Figure 13. Two-dimensional E-field plot at 10.5GHz 

IV. CONCLUSION

   In this research, a wideband split ring resonator-based 

transmitarray unit cell is designed using CST studio at 

10GHz. The unit cell has wide impedance bandwidth of 

43.7% along with high transmission magnitude. The 

rectangular to square waveguide transition is designed for 

FSS unit cell characterization setup. The parametric 

simulations are performed with transition length variation to 

reduce the reflections magnitude below -20dB. The square 

waveguide cross section area is varied for cutoff frequency 

adjustment over 4 GHz frequency range. Complete test setup 

comprised of unit cell with the rectangular to square 

waveguide transition is simulated and high transmission 

magnitude of -0.23dB is obtained.  
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