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Abstract: Composite material has been widely used in aircrafts 

due to its high strength to weight ratio that leads to weight saving 

of the aircrafts. Equally important, aircraft material should be 

tough i.e. it should have the ability to absorb high energy and thus 

resist fracture. The aircraft’s wing design requires the material to 

have high toughness as parts of the wing especially its leading 

edge is subjected to impact loadings. Using finite element software 

of LS-DYNA, this research focuses on studying the impact 

behaviour of composite panels that represent the leading edges of 

wings when the panels are subjected to rigid sphere projectile. 

Three shapes of panels are used: flat, semi-circular and semi 

ellipse while panels can be of 2, 4 and 8 layers to vary its thickness. 

The panels are made of laminated composites with woven carbon 

fibres and the angle of orientations are [0/90] n, [0/45]n and 

[45/-45]n where n will give the number of layer for the composite. 

The Mat-58 material type suitable for woven type fibre is used 

where failure criteria of Hashin is applied. It was found that the 

simulation results are in a very close agreement with the finding 

from experiments conducted earlier. Furthermore, the optimum 

stacking sequence was found to be the [0/45]2 stacking sequences 

 
Index Terms: Energy absorption, FEA Simulation, Impact 

loading, Leading edge. 

I. INTRODUCTION 

Studies conducted on composite materials and structures 

applicable in aircraft and aerospace structures are numerous 

[1-5]. In aircraft structure, composite material has been 

applied in various parts including fuselage, wing and tail. The 

main reason for the applications of composite material here is 

its high specific strength and stiffness that provide weight 

saving to the aircraft. However, most of these parts require 

accurate structural analysis as they are subjected to variety of 

loads that may lead to failures such as yielding, buckling, 

fatigue, parametric instability and impact fracture [6-10]. As 

shown in Fig.1, one important part of a wing of an aircraft is 

leading edge, a section commonly hit by impact loading that 

may be a consequence of bird impact or hail impact. These 

impactors come as a projectile that can hit and penetrate the 

wing structure commonly made of laminated composites. As 

a consequence, delamination or even fracture may occur to 

the structure and thus reducing its load carrying capacity 

[11].  
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It is thus significant to investigate the influence of impact 

loading on curved panels resembling the leading edge at the 

design stage of the aircraft wings. 

 

 
Fig. 1: An aircraft wing 

 

The ability to resist impact load that may lead to fracture is 

characterised by the toughness of the structure. Toughness is 

a material property that give the amount of energy absorbed 

by the structure subjected to impact loading. For a leading 

edge of an aircraft to function well, it must be able to absorb a 

certain amount of kinetic energy i.e. it must have a minimum 

toughness. As such it is necessary to conduct impact test on 

all forms of leading edge to determine its toughness and 

parameters that affect the toughness. 

Lo´pez-Puente et al [12] performed investigation on the 

breakage mechanisms of carbon/epoxy woven composite that 

occur during the penetration process of oblique ballistic 

impacts. The experimental works was successfully validated 

with numerical results. In a study, the curvature effect on the 

initiation of fracture of composite plates and shell was 

investigated [13]. Cylindrical shell structure was found to be 

affected more compared to flat plates. Furthermore, several 

FEM models have been developed to investigate the impact 

induced fracture of laminated composite structure [14-16]. 

Omar et al [17] conducted experimental study to investigate 

the effect of several parameters of curved panels such as 

curvature, thickness and angle of orientation on the impact 

behaviour of carbon fiber epoxy composite wing leading 

edge structure. The study discovered the significant effects 

that are actually provided by the parameters and the plots of 

the energy absorption per unit mass of structure against those 

parameters were given. 

This study is to continue the work in [17] by applying finite 

element method in investigating the impact behaviour of 

carbon epoxy composite wing leading edge structure 

subjected to a solid low velocity projectile. Three shapes of 

leading edge panels were used: 

flat, semi-circular and semi 

ellipse while panels can be of 
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2, 4 and 8 layers to vary its thickness.  The study on the effect 

of radius of curvature of the panels on the impact behaviour 

of the panels was also conducted. 

II. METHODOLOGY 

The material properties of the carbon-epoxy composite used 

here are given in this section. The dimensions of the curved 

panels that represents wing leading edge of aircraft are 

specified. The FEM procedures of modelling and analysis 

using LS-DYNA [18], a software owned by Livermore 

Software Technology Corporation (LSTC) are also 

elaborated.  

A. Materials 

The leading edge of the wing in this study is made of 

carbon-epoxy composite. Carbon fibre in woven fabric form 

was used here and, in the experiment, [17] performed. 

Tensile test was conducted on such the fabricated 

carbon-epoxy specimen to get the stress-strain plot such as 

shown in Fig. 2. In the LS-DYNA software applied in this 

study, the material model used is Mat-58 that is suitable for 

laminated composite with unidirectional layers and woven 

fibres. The Mat-58 applied the Hashin’s failure criteria while 

tolerating progressive failure analysis such that as the 

maximum effective strain is reached at certain elements, the 

specific elements are considered completely removed. For 

composites with woven fabrics and laminates such as in this 

study, the quadratic failure criteria are used such as: 

Failure mode for tensile fibre (        
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Failure mode for compressive fibre (        
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Fig. 2 : Stress-strain plot for the composite 

On the other hand, the impactor is made of steel with slight 

adjustment in the steel density property to complement the 

experimental values [17]. Table I gives the material 

properties of the composite and the steel impactor.   

 

 

 

Table 1 Material properties of composite and steel 

impactor  

Material 

Young’s 

modulus, E 

(GPa) 

Poisson’s 

ratio, v 

Density 

(Kg/mm
3
) 

Composite  87.34 0.207 1.75(10
-6

) 

Steel 207 0.3 2.389(
-3

) 

B. The dimensions 

Following the experimental work performed by the authors 

[17], the leading edge applied here is of three forms: flat, 

semi-circular and semi-ellipse such as shown in Fig. 3. The 

effect of thickness of composite is studied by varying the 

composite number of layer such as the composites may have 

2, 4 and 6 layers where thickness per layer is 1 mm. 

Depending on the number of layers, the selected angles of 

orientation of the composites are [0/90]n, [45/-45]n and 

[0/45]n where n will give the specified number of layers. In 

LS-DYNA, the leading edge panel was defined as 

SECTION_SHELL as Mat-58 can only take shell element. 

By doing so, the thickness for each layer and the angle of 

orientation associated with each layer can be specified. 

Furthermore, the radius of the impactor ball is 10 mm. The 

impactor was defined as SECTION_SOLID where the size of 

the steel impactor can be input.  

 

 
          (a)                                (b)                      (c) 

Fig. 3 The 3 forms of leading edge: (a) Flat plate (R = 0) (b) 

Semi-circular (R = 0.5R0), (c) Semi-ellipse (R = R0) 

C. Boundary Conditions 

The zero displacement occurring in all directions at the base 

of the leading edge panel was taken as the boundary 

condition of the structure. In LS-DYNA, the impactor is 

considered MAT_RIGID as it is set to be un-deformed. 

D. Energy Absorption  

Through finite element analysis (FEA), the graph of 

displacement against time, velocity against time and force 

against time can be determined. The he following formula is 

to calculate the energy absorbed, E :  

  
 

 
      

    
                                                          (3)                                                                               

where  m is the mass of the composite,    and    are the 

initial and final velocities of the ball. 

III. RESULTS AND DISCUSSION 

Here, the results from the FEA is first validated with results 

from the experiment performed earlier. Following that, the 

results on the impact behaviours of the three forms of the 

trailing edges with varying 

radius of curvature and 

thickness are elaborated.  
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A. Validation 

The validations of the FEA works were conducted by 

comparing to the author’s previous experimental study [17]. 

The validation is performed on composites with the 

following specifications: 1. Flat plate, R = 0 having 2-layer 

with angle of orientation, [0º/90º] 2. Semi-circular plate, R = 

0.5Ro having 4-layer with angle of orientation, [0º/90º]2. 

While Fig. 4(a) shows a different numerical and experimental 

plots corresponds to flat leading edge due to inevitable 

problems of noise and vibration of machine at the time of 

experiment, for leading edge with semi-circular form in Fig. 

4 (b), there is a good correlation in the graph of energy 

absorbed vs time corresponds to numerical and experimental 

work.  The graph shows that increasing the impact time, the 

absorption of energy increases as well, in a non-linear 

fashion.  

 

 
                     (a)                                             (b) 

Fig. 4 :  Experimental validations for leading edges with (a) R 

= 0, 2 layers, [0/90] and (b) R = 0.5Ro, 4 layers, [0/90]2 

B. Impact behaviour of composite leading edge panels 

The impact behaviour of composite subjected to low velocity 

impact is characterised by the deformation of the composite 

material until the point of fracturing. A material deforms as it 

absorbs increasing amount of energy while stress is created in 

the material. As the deformation is increased, stress is 

increased as well up to a certain level of energy absorbed, 

fracture starts to occur when the material cannot take the 

stress anymore. This is the point when the striker passes the 

specimen. Fig.5 shows the striker that passes the 

semi-circular, 2 layer specimen with [0/90] orientation angle. 

The amount of energy absorbed before fracturing, can be 

calculated using Equation (3) based on the graphs in Fig. 6. In 

Fig.6, the highest energy occurs at the beginning of the 

horizontal energy and velocity line that shows the specimen 

has been cut. In this case, the maximum energy absorbed 

is28.1042 J.  

 

Fig.5: Deformation of the semi-circular, 2 Layers, [0/90] 

specimen 

 

 
Fig. 6: The velocity and energy absorbed in the 

deformation of the semi-circular, 2 layers specimen 

 

Increasing the thickness to 8 layers of the semi-circular 

specimen with [0/90]4 stacking sequence, the deformation 

process can be seen in Fig. 7 and Fig.8. From Fig. 8, it can be 

seen that it takes longer time of 3.9 s for the striker to fully 

penetrate the specimen. The velocity becomes constant at 

9.797 m/s where the energy absorbed can be calculated as 

31.28889 J. 

 

 
Fig. 7: Deformation of semicircular, 8 layers, [0/90]4 

specimen 

 
Fig. 8 The velocity and energy absorbed in the 

deformation of the semi-circular, 4 layers specimen 
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C. The radius of curvature effect 

This study is to investigate the influence of radius of 

curvature of the leading edge panels on the impact behaviour 

of the panel. The radius of the leading edge was varied from 0 

to 140 mm. The thickness and stacking sequence are fixed at 

4 layers and [0/90]2 respectively. Table II shows the energy 

absorbed per unit mass by specimens having varying radius 

of curvature while Fig. 9 gives the effect of radius of 

curvature of the leading edge on the specific energy 

absorbed.  

Table II: Influence of radius of curvature of leading edge 

specimen on its energy absorption  

Radius (mm) Energy 

(J) 

Specific energy 

(J/Kg) 

0 2.67 20.6 

35 10.95 71.2 

70 23.09 132.7 

105 20.7 100.48 

140 17.1 71.8 

 

From Figure 9, conclusion can be made that the increase of 

radius of curvature will also increase the specific energy. The 

maximum point occurs at radius, R = 70 mm and the specific 

energy starts to reduce following the maximum point. The 

highest energy per unit mass for 4 layers composite is 132.7 

J/Kg. 

D. The influence of panel thickness 

This study is to investigate the effect of thickness of the 

leading edge panels on the impact behaviour of the panel. In 

this study, thickness of leading edge panels were varied while 

the stacking sequence of [0/90]n with R = 70 mm was used. In 

tabular form, the effect of panel thickness on the energy and 

specific energy absorbed can be seen in Table III. It shows 

that even though the energy absorbed is increased as the 

thickness is increased, the specific energy is decreased. This 

makes sense because the mass increases doubly moving from 

2 to 4 and to 8 layers while the energy increases at lower rate 

compared to the rate thickness is increased. Fig. 10 shows 

clearly that specific energy decreases with the increase of the 

thickness of the specimen. 

 

Table III: The effect of thickness on the specific energy 
Thickness Energy (J) Specific 

Energy(J/Kg) 

2 layers 20.07 230.69 

4 layers 23.09 132.7 

8 layers 31.08 89.31 

 

 
Fig. 10: Specific Energy Vs Thickness 

 

Comparing to the experimental results [17], the energy 

absorption trend obtained through FEA is similar where the 

energy absorbed was increased with the increase of thickness.  

E. Influence of Stacking Sequence 

The effect of stacking sequence of the leading edge panels on 

the impact behaviour of the panels is given here. Since the 

radius of curvature for the highest energy absorption is R = 

70 mm, the FEA computations for different stacking 

sequences are taken for model with R = 70 mm. Table IV 

shows the change of energy absorption capability of the 

leading edge panels with fibre orientation while Fig. 11 

shows the plots of energy per unit mass against thickness of 

the leading edge panel. It can be seen from the plots that the 

highest energy absorbed is provided by the [0/45] 

configuration and followed by the [45/-45] and [0/90] 

stacking sequences. 

 

Table IV:  The change of Energy Absorption Capability with 

Angle of Orientation  

Thickness Fiber 

orientation 

Energy (J) Specific 

energy 

(J/Kg) 

2 layers [0º/90º] 20.07 230.7 

 [45º/-45º] 22.6 259.8 

 [0º/45º] 21.5 247.13 

4 layers [0º/90º 23.2 133 

 [45º/-45º] 27.4 157.5 

 [0º/45º] 38.17 219.36 

8 layers [0º/90º] 31.3 89.9 

 [45º/-45º] 40.4 116.1 

 [0º/45º] 45.2 129.88 

 

 
Fig.11: The effect of thickness on specific energy of the 

leading edge panels 

IV. CONCLUSIONS 

The impact behaviour of laminated composite panels exerted 

by steel ball impactor was studied numerically using the 

LS-DYNA FEM software.  The composite panels can be of 

three forms i.e. the flat, the semi-circular and the semi-ellipse 

panels were representing the leading edge of aircraft. 

Material type Mat-58 in LS-DYNA was employed. 

Validations of the numerical work were successfully 

conducted based on 

experiment results for 

semi-circular panel having 4 

layers with [0º/90º]2 
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orientation. Following that, several studies were performed to 

investigate the influences of panel thicknesses, angle of 

orientation and radius of curvature on the impact behaviour 

of the composite panels. It was found that panel with R = 70 

mm gives the highest energy absorbtion. Thus the radius, R = 

70 mm is the optimum radius of curvature for the range of 

specimen tested in this investigation. For the same curvature 

with different thickness, the plots of the energy per unit mass 

against thickness shows the reduction in specific energy 

absorption as the thickness is increased. Lastly, for the effect 

of angle of orientation, it can be said that the optimum 

stacking sequence is found to be for the combination of 

[0º/45º] stacking sequences 
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