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Abstract. Seasonal variations have brought about significant changes in vegetation cover and 
spatial distribution in the past decade. Globally, grazing lands are experiencing a significant 
warming and drying process more especially the grazing lands in the Savannah and 
Sahel regions. This paper reports the study undertaken for mapping changes on the grass 
above ground biomass (GAB) due to these seasonal changes using Sentinel 2A 
Multispectral Instrument (MSI) data.  Emphasising on the GAB, the main objective of this 
study is to map and model monthly GAB variations to their corresponding 
meteorological data. A set of selected widely used vegetation indices were applied to 
satellite data, and later were further regressed against corresponding in-situ GAB samples 
and weather data, hence, producing a predictor of GAB from satellite data. Sentinel 2A 
MSI data were acquired monthly from January to December 2018. Combined with 
precipitation and temperature data, the GAB variations on monthly scales were analysed. 
The results indicated that GAB determined and its seasonal variations shown good 
agreement (r = 0.8, p < 0.001) with corresponding in-situ verifications. Temperature was 
found inversely proportionally to GAB for the whole grazing calendar. Therefore, it was 
concluded that mapping GAB seasonal variations is achievable with Sentinel2 MSI, vast 
potential for input to grazing land management. 

1. Introduction
The Grassland quantities are declining, mainly caused by human-induced changes along with
agricultural production, substantial livestock grazing, as well as endangered species, and was further
challenged by potential impact of seasonal changes [1]. Nomads need to adapt to seasonal change to
ensure sustainable grazing ideas, but they also need assistance like obtaining information on the area's
vegetation conditions and seasonal patterns [2]. Unless the grassland ecological system natural
changes are recognized and are used as development policy guidelines, interventions are probably to
be random tasks comprising guesswork development [3]. A systematic evaluation is required to
explain the complexities of the grazing-lands in the Savannah as basis for the development of
appropriate management policies [4].
       Previous studies addressed the interaction between changes in vegetation and climate variations 
on annual basis and generally concluded that rainfall was most apparent to influence vegetation 
productivity [5]. Ibitola & Balogunb [6] utilize the 2005, 2010 and 2019 Moderate Resolution Spectro-



IGRSM 2020

IOP Conf. Series: Earth and Environmental Science 540 (2020) 012061

IOP Publishing

doi:10.1088/1755-1315/540/1/012061

2

radiometer (MODIS) datasets to investigate spatio-temporal drought variation in Northern Nigeria. 
Numerous methods were used in investigation the possible impacts of seasonal variations on grass 
productivity, e.g. vegetation index depending on remote sensing information to describe the possible 
relations between seasonal change and the corresponding changes in vegetation [7]. As such, the 
Vegetation Index was popularly used on broader spatial and temporal scales to describe the regional 
vegetation cover.  

This paper reports the preliminary results on study of seasonal variations of GAB in grazing 
reserves using Sentinel 2A Multispectral Instrument (MSI) data, incorporated with corresponding 
meteorological data.  These GAB derived information that can aid in restoring the reserves and 
increase livestock sustainability. The main objective of this study is to map and estimate monthly 
GAB variations and determines the impact of rainfall and temperature in Daware grazing land, north-
eastern (NE) Nigeria.  In addition, spatiotemporal dynamics of GAB within complete grazing calendar 
were also examined and analysed 

2. Materials and Methods

2.1.  Study Area 
The study area is Daware grazing land in Adamawa state, north-eastern part of Nigeria (Figure 1); 
with approximate area of 7409.20 ha. Most regions in the NE-Nigeria are sparsely vegetated due to 
limited rainfall and the natural climate is fragile [8-10]. Daware grazing land's vegetation cover is 
essentially the grassland of Guinea Savanna with the grass interspersed with small, drought-resistant 
trees. The grass species was dominated by mixture elephant grass species and shrubs. The reserve soils 
are typically sandy-loam type except in very few areas where there are alluvial deposits [11, 12].  

Figure 1. Daware grazing land, Yola, NE-Nigeria. 

The study area's native people are mostly farmers who make up about 60% of the state's population. 
Agricultural production is the inhabitant’s primary activity as they rear livestock in addition to crop 
production. Majority of the people are subsistence farmers in nature. The pastoralist is always on the 
move searching for grasses and water for their livestock. 
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2.2.  Satellite and Ancillary Data 

2.2.1.  Field samplings. Systematic sampling was adopted for the collection of field GAB. The 
sampling was based on the Green House Gas Emission Guidelines [13] for above ground biomass 
field survey guide for baseline survey.   The sampling quadrant 10x10 m quadrant was adopted for the 
sampling of grass measurement that represents the pixel size of the satellite imagery used. For each 
quadrant, five samples of 1m x 1m of grass was measured, harvested and weight for GAB estimation. 
The grass samples were later taken to the ovum in the laboratory for 72hrs at 40.6°C to dry. It was 
then weighed to get the biomass in grams. Total number of 300 samples was collected.  

2.2.2.  Satellite Data. Sentinel 2A MSI data spatial resolution is 10m, therefore a Satellite data of 
Sentinel 2A and 2B MSI for a complete season was acquired from the USGS explorer free data 
services (Table 1).   A comparison was made between the monthly satellite images of the study area 
between 2017 and 2018; and has shown no significance difference. 

Table 1. Sentinel 2A/2B MSI Data used in the study 
Image data Product 

level 
Cloud 
cover 

Date of acquisition 

S2A_MSIL1C_20180127T093241_N0206_R136_T33PTL_20180127T132740 L1C <10% 27 January 2018 
S2B_MSIL1C_20180221T093029_N0206_R136_T33PTL_20180221T145848 L1C <10% 21 February 2018 
S2B_MSIL1C_20180303T093029_N0206_R136_T33PTL_20180303T113257 L1C <10% 03 March 2018 
S2A_MSIL1C_20180407T093031_N0206_R136_T33PTL_20180407T113929 L1C <10% 04 April 2018 
S2A_MSIL1C_20180517T093041_N0206_R136_T33PTL_20180517T114231 L1C <10% 17 May 2018 
S2A_MSIL1C_20170601T093041_N0205_R136_T33PTL_20170601T094458 L1C <10% 01 June 2017 
S2B_MSIL1C_20170716T093039_N0205_R136_T33PTL_20170716T093617 L1C <10% 16 July 2017 
S2B_MSIL1C_20180810T093029_N0206_R136_T33PTL_20180810T132651 L1C <10% 10 August 2018 
S2B_MSIL1C_20180929T093029_N0206_R136_T33PTL_20180929T132115 L1C <10% 29 Sept. 2018 
S2B_MSIL1C_20181019T093029_N0206_R136_T33PTL_20181019T113408 L1C <10% 19 Oct. 2018 
S2A_MSIL1C_20181123T093311_N0207_R136_T33PTL_20181123T112737 L1C <10% 23 November 2018 
S2A_MSIL1C_20181223T093411_N0207_R136_T33PTL_20181223T112232 L1C <10% 23December 2018 

2.2.3.  Meteorological data. The climatic data was from the Nigeria Meteorological Survey Yola for 
2018 grazing calendar (Figure 2.). Daware grazing reserve is very near to Yola, the capital of the 
Adamawa state; hence, they experience the same climatic conditions.  The estimated annual 
temperature is 28.0 ° C. April is the warmest month with an average of 32.1 °C. December is normally 
the coldest month, having average temperatures of 25.9 °C. The average rainfall in a year is 933 mm. 
The precipitation ranges from the driest month to the wettest month to 211 mm. Temperatures usually 
vary by 6.2 °C throughout the year [14].  

2.3.  Methods
The methods involved in this study are data collection, data processing, and the presentation of 
the analyzed result as spatio-temporal information of the study area. These are summarized as a 
flowchart in Figure 2. 
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Figure 2. Flowchart of methodology. 

A substantial number of vegetation indices were established tailored to vegetation analysis 
and mapping. These indices were sorted out and selected based on a threshold of R2> 0.5. The VIs 
were correlated with their corresponding induction GAB and were ranked from the best correlated 
to the worst. Four (4.) of these indices has a good correlation R2> 0.5 and they were chosen as the 
most relevant vegetation indices that will be used in the study. These are Normalized Distribution 
of Vegetation Index (NDVI), Vegetation Index Number (VIN), Normalized Difference Index 
(NDI) and Ratio Vegetation Index (RVI). They were determined based on variations between 
chlorophyll absorbing visible light (from 0.4 to 0.7 μm) and leaf cell structure reflecting near-
infrared light (from 0.7 to 1.1 μm) which is the ratio between Near-infrared (NIR) and Red band. 
The pixel position was detected by the coordinates that was acquired by GPS during the capture of 
data samples.  The linear regression was used in analyzing the correlation of this vegetation index 
with in-situ GAB to obtain the spectral transformation model. Using the transformation model, 
GAB estimates for the whole grazing calendar was obtained. Precipitation and temperature were 
correlated with the satellite derived GAB in order to determine its relationship. 
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3. Results

3.1.  GAB Estimation using Spectral Transformation Model
Multiple regression was used to identify the relevant vegetation indices among the initially 
selected four and were also ranked in their performance in-terms of their correlation with GAB. 
This was chosen based on the threshold values R2> 0.8000; P-value < 0.05 and validation at RMSE 
±2.00g/m2. Figure 3. Presents the relationship between the induction GAB and each of the four 
vegetation indices.  

Figure 3. Map Biomass relationship with: (a) NDVI, (b)VIN, (c) RVI, (d)NDI. 

The relationships of each of the VIs with in-situ GAB were indicated by R2 and p-value. The 
result of the four of the VIs tested and validated was given in Table 2. Among the four vegetation 
indices, VIN is the most fitted vegetation index that can be used to modeled measured GAB to the 
satellite imagery. It has the highest degree of correlation and validated RMSE < 2.00g/m2. 

Table 2.  Summary of Spectral Models and Validation. 
Vegetation 
Index 

Model R2 F-Value P-value RMSE
(g/m2) 

NDVI GAB = 26828x - 3486.3 0.7721 192.88 <0.01 2.35 
VIN GAB = 3589x - 2075.7 0.8732 192.88 <0.01 1.75 
NDI GAB = 6.7059x - 3784.7 0.62 45.95 <0.0100 3.03 
RVI GAB = -25818x + 18846 0.71 67.83 <0.01 2.67 

The VIN derived model was used to calculate the monthly GAB of the study area 
from satellite data. The calculated GAB in kg for 12 months was presented as maps in 
Figure 4 and Table 3. 
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Figure 4. Monthly GAB derived from satellite data. 

The reserve has a maximum GAB estimated at 7,353.55 tones of grass by the month of September, 
approximately, 1.02 tn-1ha. The minimum grass availability is in the month of February estimated at 
24.65 tones approximately 0.32tn-1ha. 

3.2.  Relationship of GAB with Rainfall and Temperature 
Over the years, grazing-lands in northern Nigeria were influence by changes in climate 
through temperature increase, protracted dry seasons, floods, and drought, that resulted to low 
grass productivity and spatial distribution. The result from this study revealed that in the wet 
season starting from April to September, there is an increase in GAB with rainfall amount 
(R2> 0.8) and (P < 0.01). This indicates there is a significant relationship between rainfall and 
GAB. However, temperature was negatively correlated with grass biomass in the wet season 
(R2> -0.8) and (P < 0.01) (Figure 5). This result will be used for future studies in predicting 
GAB availability within certain months using rainfall and temperature data as variables. 
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Figure 5. Effect of (LHS) rainfall (RHS) temperature on GAB in Daware grazing reserve. 

Table 3 are the results of the monthly climatic conditions and the grass above-ground biomass in 
Daware grazing reserve situated in savannah zone. 

Table 3. Result of the GAB and climate data in Daware grazing land. 
Month JAN FEB MARCH APRIL MAY JUNE 
GAB (kg) 46,067.65 24,647.67 737,975.15 69,031.07 1,236,422.23 3,249,077.53 
Area (ha) 148.32 77.85 2,359.68 219.57 3,322.02 6,510.27 
Rainfall (mm) 0 0 5 49 106 140 
Temperature (°C) 26.5 28.6 31.3 32.1 29.9 27.4 

Month JULY AUG SEPT OCT NOV DEC 
GAB (kg) 5,219,687.05 5,365,059.38 7,353,546.42 5,889,869.13 3,471,028.57 2,380,951.93 
Area (ha) 6,668.05 6,785.13 7,198.69 7,332.44 7,344.90 6,537.72 
Rainfall (mm) 178 211 191 52 3 0 
Temperature (°C) 26.2 26.3 26.2 27.7 27.4 25.9 

4. Discussion
4.1.  GAB Estimation using Satellite Data
The vegetation index serves as indicator in an equation, which transforms the measured in-
situ biomass into satellite data [15]. As the spectral reflection of green vegetation is very low in the 
Red band and relatively much higher in the optical spectrum region of the NIR [16], the VIN value 
will be closer to 1 when the object has a similar reflectance in the Red and NIR regions, soil is a 
typical example. While, the green objects, the value will be greater than 1 [17]. Therefore, we 
expect highly densified grass area to have a high VIN value and the lower density to have a lower 
value near 1. The relationship between VIN and the in-situ GAB gives the transformation model with 
correlation coefficient = 0.8732, root mean square error (RMSE) = 1.75gm-1 and P value < 0.01.
       Linear regression involves mapping from a training samples as independent variables to have and 
output vector [18]. Researchers choose this type of approach because of its simplicity and appealing 
data analysis incorporating vegetation index as input values (x) the response to which the satellite-
derived GAB is predicted as (y), [19-22]. From the regression result, Daware grazing-land has the 
range of grass productivity from 1.02 Mg ha-1 to 0.32 Mg ha-1 for the two seasons.  

4.2.  Relationship of GAB with Seasonal Variations 
Previous studies were able to determine the GAB estimate within a particular time frame [23]; [24, 
25] and relate it to temperature and precipitation [26, 27]. However, they are silent on the spatio-
temporal variations of GAB for the whole grazing calendar in a grazing land [28]. This study 
determining the relationship between monthly GAB availability and changes in temperature and 
rainfall (Figure 6). 
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Figure 6. Relationship of GAB and climatic variations. 

       High rainfall is normally being experience in the months of June to September. During this period, 
plants take advantage of the available moisture. Grasses grow and multiply quickly and the grazing 
lands will have sufficient pasture for livestock feeds. The dry season starts from December to May. 
During this season, the grass dries out; the grazing land takes on a completely new appearance. From 
the month of May, there is an increase in grass productivity in relation to the rainfall amount up to 
September. Although there is no rain in the months of November and December, the soil is still wet 
and can support the grass for some weeks. Seasonal migration starts by the months of December 
when the grasses in the grazing reserves start drying out. The herds migrate to the tropical 
rainforest or the wetlands that are around the lakes for pasture and water [29]; and return to the 
grazing reserve around June.  

5. Conclusion
Variation of GAB due to seasonal changes was successfully determined using Sentinel 2A MSI
satellite data. Among the numerous vegetation indices, vegetation index number (VIN) was found to
be the most relevant vegetation index that can be used for mapping and modeling GAB from in-situ
GAB measurements at high accuracy and transforming the measured GAB to the satellite data.
Combined with precipitation and temperature data, the GAB variations on monthly scales were
analysed. The results indicated that GAB determined and its seasonal variations shown good
agreement with corresponding in-situ verifications. Therefore, mapping GAB seasonal variations is
achievable with Sentinel2 MSI. This can serve as a vast potential for input to grazing land
management.
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