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Conversion of jet biofuel range hydrocarbons
from palm oil over zeolite hybrid catalyst
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Abstract
The catalytic conversion of palm oil was carried out over four zeolite catalysts—Y, ZSM-5, Y-ZSM-5 hybrid, and Y/ZSM-5
composite—to produce jet biofuel with high amount of alkanes and low amount of aromatic hydrocarbons. The zeolite Y-
ZSM-5 hybrid catalyst was synthesized using crystalline zeolite Y as the seed for the growth of zeolite ZSM-5. Synthesized
zeolite catalysts were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, field-emission scanning
electron microscopy, and temperature programmed desorption of ammonia, while the chemical compositions of the jet
biofuel were analyzed by gas chromatography-mass spectrometry (GC-MS). The conversion of palm oil over zeolite Y
resulted in the highest yield (42 wt%) of jet biofuel: a high selectivity of jet range alkanes (51%) and a low selectivity of jet
range aromatic hydrocarbons (25%). Zeolite Y-ZSM-5 hybrid catalyst produced a decreased percentage of jet range
alkane (30%) and a significant increase in the selectivity of aromatic hydrocarbons (57%). The highest conversion of palm
oil to hydrocarbon compounds was achieved by zeolite Y-ZSM-5 hybrid catalyst (99%), followed by zeolite Y/ZSM-5
composite (96%), zeolite Y (91%), and zeolite ZSM-5 (74%). The reaction routes for converting palm oil to jet biofuel
involve deoxygenation of fatty acids into C15–C18 alkanes via decarboxylation and decarbonylation, catalytic cracking into
C8–C14 alkanes, and cycloalkanes as well as aromatization into aromatic hydrocarbon.
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Introduction

Global primary energy consumption increases by 37%
between 2013 and 2035. Fossil fuels remain the dominant

form of energy in 2035 with a share of 81%, down from

86% in 2013.1,2 The development of renewable fuel

resources has attracted considerable attention because of

the global environmental concerns and the exhaustion of

the fossil fuel resources.3 A viable alternative way of sol-

ving these problems is the production of hydrocarbon from

inexpensive biomass waste sources. The current share of

biomass in the net final energy consumption by end-use

sector is 14%, which comprises heating and cooling at

12.6%, transportation at 0.8%, and electricity at 0.4%.4 The

increasing demand by the aviation industry for alternative

fuels that offers potential environmental benefits has accel-

erated advances in exploring new generation of renewable
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biofuel sources. Biomass, also known as lignocellulosic

material, represents a valid alternative source to initially

produce liquid bio-oil and finally jet biofuel, without com-

peting with food crops, and promote the reduction of car-

bon emission.5 Bio-oil derived from the pyrolysis of biomass

is considered to be a promising second-generation energy-

laden fuel.

Jet fuel from petroleum refining, a type of aviation fuel,

has a growing market demand because of the rapid devel-

opment in the aircraft industry.6 Consequently, the increase

of petroleum oil prices, environmental concerns, and uncer-

tainties of petroleum availability spur interest in exploring

the potential of biomass-derived jet fuels (jet biofuel) as an

alternative to fossil fuel. Liquid jet biofuel derived from

plant oil, such as sunflower oil, soybean oil, palm oil, rape-

seed oil, and algae oil, has been extensively studied by

many researchers.7–10 The production of jet fuels is

required to follow highly stringent international standards,

which makes it more difficult to develop alternative fuel

using biomass resources. Currently, researchers propose

several methods to convert biomass materials to biojet fuel,

which include hydroprocessing, pyrolysis, Fischer–

Tropsch gasification, or advanced gas fermentation pro-

cess.11–13 Among these methods, catalytic fast pyrolysis

is recognized as the most established and efficient single

process. Fast pyrolysis performs thermochemical decom-

position of lignocellulosic compound through rapid heating

at a temperature range of 350–800�C in the absence of

oxygen, converting it to liquid bio-oil with gas and char

as byproducts.14–16

The major producers of palm oil in Southeast Asia are

Indonesia and Malaysia. The intense research, develop-

mental, and commercial activities of the palm oil industry

in these countries have led to immense interest in develop-

ing green aviation biojet fuel from renewable biomass

materials. Li et al.9 investigated jet biofuel production from

palm oil using mesoporous zeolite catalysts impregnated

with nickel (Ni) and has successfully converted it into

53% of jet range alkane and 17% of jet range aromatics.

Oil palm biomass has outstanding properties and may be

converted into jet biofuel due to the presence of a consid-

erable amount of fatty acids (C16–C18) and relatively low

oxygen content that can be easily removed by deoxygena-

tion process. To meet the international specifications of low

jet range alkane, the biojet fuel from palm oil that contains

high amount of fatty acids can be processed through several

routes, which are catalytic deoxygenation reactions, includ-

ing decarboxylation or decarbonylation and carbon chain

cracking.17

Various heterogeneous catalysts have been tested for the

conversion of fatty acids in palm oil wherein the choice of

catalysts is vital especially during catalytic cracking pro-

cess. Zeolites have been efficiently applied in the petro-

chemical industry as molecular sieves, adsorbents, and

heterogeneous catalyst due to the framework nanostructure,

ion-exchange abilities, chemical composition, pore size

distribution, and both acidic–basic characteristics.18–20 For

example, zeolite A may have been efficiently applied in the

petrochemical industry as molecular sieves and adsorbent,

whereas zeolite Y has been applied as heterogeneous cata-

lyst for cracking and hydrocracking of hydrocarbon mole-

cules into oil and gas. However, the pore size of zeolite Y

needs further modification to improve the cracking effi-

ciency of heavy hydrocarbon bio-oil to light jet range

alkane.

Zeolite Y is the main active catalyst of the catalytic

cracking process because of its strong acidity, high poros-

ity, and hydrothermally stable properties.20 Nevertheless,

the pore size of zeolite Y (0.74 nm� 0.22 nm) prevents the

cracking of larger molecules that occur on the external

surface structure of zeolite Y. To improve the cracking

activity of heavy hydrocarbon to light jet range alkane,

an additive component needs to be added to zeolite Y cat-

alyst. Zeolite ZSM-5 has been used as an additive compo-

nent to increase gasoline octane number and light olefins.21

Since zeolite Y and ZSM-5 are highly active in catalytic

cracking, the combination of these two zeolites can be

applied to improve jet range alkane, hence reducing the

formation of aromatic hydrocarbons.

In the present work, hybrid zeolite nanocatalyst com-

posed of zeolite Y and ZSM-5 is synthesized by employing

zeolite Y as nutrients for the growth of ZSM-5. The con-

version of palm oil directly to jet biofuel range alkane and

aromatic hydrocarbons over zeolites Y, ZSM-5, Y-ZSM-5

hybrid, and Y/ZSM-5 composite by pyrolysis process is

tested and analyzed. The reaction pathways to produce jet

biofuel range alkane and aromatic hydrocarbons are

proposed.

Experimental details

Materials

Rice husk ash (RHA, 95 wt% SiO2) was obtained from the

Zeolite and Nanostructured Materials Laboratory, UTM,

Malaysia.22 Aluminum oxide anhydrous (Al2O3, Bendo-

sen, CCM Chemicals Malaysia), sodium aluminate anhy-

drous (NaAlO2, Riedel-de Haen, Germany), sodium

hydroxide (NaOH, Merck, USA), sulfuric acid (H2SO4,

Merck, USA), and tetrapropylammonium bromide

(TPABr, Sigma-Aldrich, USA) were directly used without

purification. The palm oil used in the experiments was

purchased from the local market. Distilled water was used

in the synthesis, preparation of the solution, and purifica-

tion of the solid samples.

Synthesis of zeolite Y

The synthesis of zeolite Y was prepared using hydrother-

mal method reported by Hamdan and Keat.23 Zeolite Y was

synthesized according to the molar composition of

6.4Na2O:1Al2O3:12SiO2:180H2O via direct synthesis.
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NaOH solution was prepared by dissolving 21.64 g of

NaOH pellets in 200 mL of distilled water under stirring.

Aluminate solution was prepared by the dissolution of

NaAlO2 (19.56 g) and NaOH solution (50 mL) in a Teflon

bottle under vigorous stirring and heated until the mixture

became clear. In a separate Teflon bottle, 47.97 g of RHA

was mixed with 150 mL of the prepared NaOH solution and

heated at 95�C for 2 h with stirring. The aluminate solution

was then added slowly to the silicate solution and the mix-

ture was left at room temperature to homogenize for 2 h

under continuous stirring. Next, the Teflon bottle was

tightly sealed and aged for 8 h at 105�C in the oven. The

obtained solid product was separated from the aqueous

phase by filtration and washed until the pH of the filtrate

was below 10, followed by drying in the oven at 100�C for

24 h. Finally, the as-synthesized zeolite Y was calcined at

550�C for 550 min.

Synthesis of zeolite ZSM-5

In a typical synthesis, 0.30 g of Al2O3 was mixed with 0.11

g of NaOH and 10 mL of distilled water and was stirred at

room temperature. Subsequently, another 2.95 g of NaOH

and 15 mL of distilled water were added to the solution. An

aqueous solution of TPABr was prepared separately by

mixing 4.00 g of TPABr with 1.7 mL of concentrated

H2SO4 and 50 mL of distilled water. In the next step,

9.00 g of RHA was predispersed in 21 mL of distilled water

under stirring. The prepared aluminate and TPABr solu-

tions were then added simultaneously to the silica solution

in a Teflon bottle and homogenized with continuous stir-

ring for 30 min. The pH of the gel must be between 11 and

12 before the crystallization process. Next, the gel was

transferred into a Teflon bottle, tightly sealed, and aged

in an oven at 96�C for 7 days. The white solid formed was

filtered, washed with plenty of distilled water until pH 8,

and dried in an oven at 100�C for 24 h. The white powder of

zeolite ZSM-5 was then calcined at 550�C for 4 h and

maintained for 5 h.

Synthesis of zeolite Y-ZSM-5 hybrid

Zeolite Y-ZSM-5 hybrid was prepared based on other pub-

lished works with modified compositions and types of raw

materials21. The zeolite hybrid material was synthesized by

hydrothermal method, which produced highly crystalline

product without further heat treatment. Typically, 0.60 g

of NaOH, 2.00 g of TPABr, 3.94 g of RHA, and 9.00 g of

as-synthesized zeolite Y were added to 100 mL distilled

water. The mixture was stirred for 1 h at room temperature,

then transferred into a Teflon-lined stainless-steel auto-

clave, and crystallized at 180�C in static condition for 22

h. The solid product was filtered, washed with distilled

water until pH 9, and dried at 100�C for 24 h. Finally, the

product was calcined at 550�C for 6 h and labeled as Y-

ZSM-5 hybrid.

Synthesis of zeolite Y/ZSM-5 composite

Zeolite Y/ZSM-5 composite was prepared by physical mix-

ing of zeolite Y and ZSM-5 with a mass ratio of 1:1. Typi-

cally, 2.50 g of zeolite Y was mixed with 2.50 g of zeolite

ZSM-5 and stirred for 2 h at room temperature. The mixture

was milled in a mortar and then calcined at 550�C for 6 h.

Modification of zeolite by ion exchange

The zeolite Y, ZSM-5, Y-ZSM-5 hybrid, and Y/ZSM-5

composite were ion exchanged with NH4þ cations to pro-

tonate zeolite to create Brönsted acidity. In a typical pre-

paration, 1 g of as-synthesized Naþ-zeolite samples was

added to 50 mL of 1M NH4NO3 aqueous solution and

stirred for 2 h at 60�C. The suspended NH4þ-zeolite solid

was filtered, washed with distilled water, and air dried. The

Hþ-zeolite was obtained by calcination at 500�C for 3 h.

Preparation of jet biofuel

The palm oil conversion experiment was carried out in a

500-mL batch reactor equipped with an external heating

mantle. In this process, 200 mL of palm oil and catalyst

with a mass ratio of 20:1 was loaded into the reactor, which

was then vigorously stirred for 1 min. Thereafter, the reac-

tor was sealed and purged with flowing hydrogen for about

20 min to set the pressure and temperature. The reaction

was carried out at 390�C while stirring at 300 r min�1.

After the reaction, the liquid-phase products were collected

and separated via centrifugation. The liquid products were

analyzed using GC-MS.

Characterizations

The infrared spectra of the samples were recorded on a

Perkin Elmer (USA) Fourier transform infrared (FTIR)

using the KBr pellet method, with 20 s scans, in the wave-

number range of 1600–400 cm–1 and resolution of 4 cm–1.

The powder X-ray diffraction (XRD) data were col-

lected on a Bruker (Germany) D8 Advance X-ray diffract-

ometer using Ni-filtered copper Ka radiation (l ¼ 1.5418

Å) at 45 kV and 40 mA in the range of 2q ¼ 5–50� with

vertical goniometer at room temperature. A step interval of

0.05� 2q with a count time of 1 s per step was used. Reflec-

tion positions and d-spacings were determined from the raw

data using the automated data analysis programs.

Field-emission scanning electron microscopy (FESEM)

was monitored on a JEOL (Japan) JSM-670F to determine

the surface morphology of the samples. Prior to scanning,

the samples were coated with platinum or carbon film using

SEM auto fine-coater unit, model JEC-3000FC, or EC-

32010CC, respectively.

The acidity of catalysts was determined by temperature

programmed desorption of ammonia (NH3-TPD) analysis

and measured using the Micromeritics (USA) AutoChem

2920 V403 instrument. NH3-TPD was carried out in a flow-
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type fixed-bed reactor and loaded with 0.10 g sample at

300�C under high-purity He flow at 30 mL min–1 for 60

min. The sample was cooled at 20 mL min–1 by 10% NH3-

He to 120�C for 60 min. The sample was then purged with

high-purity He at 30 mL min–1 for 1 h and heated to 700�C
(10�C min–1). The amount of ammonia desorbed was quan-

titatively analyzed by the thermal conductivity detector.

Prior to the GC analysis, the liquid-phase products were

diluted in CCl3 at a ratio of 1:10 and analyzed using the

Agilent 6890N/5973 MSD equipped with the HP-5MS

capillary column (30 m � 250 mm � 0.25 mm). The injec-

tion temperature was set at 280�C. The GC oven tempera-

ture was programmed as follows: 4-min hold at 50�C, 2�C
min–1 ramping to 80�C, 10-min hold at 80�C, 10�C min–1

ramping at 300�C, and 10-min hold at 300�C. The GC-MS

results were quantified using the peak area normalization

method based on the peak area percentages of the identified

components. The area percent of changed concentrations of

palm oil compounds obtained from GC-MS results was

used to predict product concentration in jet biofuel.

Results and discussion

Physical properties of zeolite catalysts

The XRD diffractograms of zeolites Y, ZSM-5, Y-ZSM-5

hybrid, and Y/ZSM-5 composite are shown in Figure 1. For

phase identification, the XRD patterns of all samples were

compared with the standard patterns of faujasitic (FAU)-

type zeolite Y and mobil five (MFI)-type ZSM-5 zeolites.

XRD pattern of zeolite Y matches the standard XRD pat-

tern of FAU-type zeolite (reference code: 98-016-9078).24

The main XRD reflections at 2q values of 6.17�, 15.56�,
23.49�, and 27.58� are attributed to (111), (133), (335), and

(246) crystal planes, respectively, ascribing to the FAU

structure of crystalline zeolite Y. The X-ray diffractogram

of ZSM-5 clearly shows a pattern characteristic of MFI-

type zeolite framework structure (reference code: 98-015-

9834).25 The XRD pattern consists of a series of intense

peaks at 2q value ranges of 7�9� and 23�25�, correspond-

ing to the (101), (200), (501), (303), and (133) planes,

respectively. However, the characteristic reflections of

synthesized zeolite ZSM-5 are less intense and broader

than those of the standard reference, presumably because

of its relatively lower degree of crystallinity and smaller

crystallite size.26

It is observed that Y/ZSM-5 composite prepared by

physical mixing displays the overlapping characteristic

peaks of FAU and MFI structures, indicating the physical

coexistence of zeolite Y and ZSM-5 phases (Figure 1(d)).

The peaks at 6.27�, 10.18�, and 23.59� are the characteristic

diffraction peaks of zeolite Y, while the peaks at 8.03�,
8.88�, 23.16�, and 24.05� are the characteristic diffraction

peaks of ZSM-5. In contrast, the XRD pattern of zeolite Y-

ZSM-5 hybrid is dominantly represented by the zeolite

ZSM-5 phase with much decreased intensity of the zeolite

Y phase (Figure 1(c)). This indicates that the smaller zeo-

lite Y crystallites are embedded in the continuous zig-zag

channels and on the surface of the ZSM-5 framework.27

Therefore, it can be deduced from Figure 1(c) that in the

zeolite Y-ZSM-5 hybrid, nanostructured framework of zeo-

lite ZSM-5 exists as the main phase, in which the smaller

zeolite Y crystallites are embedded and appear homoge-

neous to XRD. Consequently, the characteristic peaks of

zeolite Y phase may completely disappear.

The morphology of zeolite Y, ZSM-5, Y-ZSM-5 hybrid,

and Y/ZSM-5 composite is shown in Figure 2(a), (b), (c),

and (d), respectively. The FESEM image in Figure 2(a)

displays cubic zeolite Y crystals of uniform size with an

average diameter of 300 nm. The morphology of zeolite

ZSM-5 in Figure 2(b) shows many layers of elongated

hexagonal prismatic structure with smoother and less

aggregated surface. The crystalline structure is 500–600

nm in length and 100–200 nm in thickness. ZSM-5 crystals

are apparently fused together forming agglomerates. Some

amorphous silica particles of 10–50 nm in diameter are

observed on the surface of both zeolite Y and ZSM-5.28

Figure 2(c) reveals the morphology of the zeolite Y-

ZSM-5 hybrid. The hybrid product constitutes a compact

structure of larger aggregates composed of intergrown Y-

ZSM-5 zeolite particles of variable sizes. The cubic struc-

ture of zeolite Y is not well defined but some Y crystals can

be observed. This observation supports the disappearance

of zeolite Y phase in the XRD pattern, which may be

caused by the encapsulation of zeolite Y by the bigger

framework of zeolite ZSM-5 crystals during synthesis.

These results are similar with those observed and reported

by Pan et al.,27 where zeolite Y crystals are swallowed by
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Figure 1. XRD diffractogram of zeolites (a) Y, (b) ZSM-5,
(c) Y-ZSM-5 hybrid, and (d) Y/ZSM-5 composite. XRD: X-ray
diffraction.
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the larger ZSM-5 particles. Comparatively, the image of

zeolite Y/ZSM-5 composite demonstrates the physical

mixture of zeolite Y with ZSM-5 crystals (Figure 2(d)).

The image shows that the bigger spherical agglomerates

of zeolite ZSM-5 are entirely covered by the nanoaggre-

gates of cubic zeolite Y structures. Evidently, the synthesis

of zeolite composite by physical mixing still retains the

original morphology of each zeolite.

Chemical properties of catalysts

Structural properties of zeolite Y, ZSM-5, Y-ZSM-5

hybrid, and Y/ZSM-5 composite were recorded using FTIR

spectroscopy in the range of 4000�450 cm�1 (Figure 3).

Generally, the FTIR spectra of zeolites can be divided into

two regions at 4000�3000 cm�1 and 1300�450 cm�1. The

spectra of zeolites in the range of 1300�400 cm�1 region

correspond to the framework vibrations of lattice cell

(T�O�T unit), where T is SiO4 or AlO4 tetrahedron, while

the 4000�3000 cm�1 region is attributed to hydroxyl

groups attached to the framework zeolite structure. All

zeolite samples show a strong broad absorption band in the

wavenumber region 1000�1100 cm�1 assigned to the

asymmetric stretching vibrations of tetrahedral SiO4 and

generally shift to higher wavenumbers with the increasing

silica ratio of the zeolite.29 The band at around 1640 cm�1

and 460 cm�1 is assigned to the scissor vibration arising

from the proton vibration in the water molecule and TO4

bending vibrations of the SiO4 and AlO4 internal tetrahe-

dral, respectively. The spectra demonstrate that the pres-

ence of broadband at 3456�3487 cm�1 is resulted from the

O�H stretching mode from water physisorbed on the sur-

face of zeolites.

FTIR spectrum of zeolite Y shows absorption band at

570 cm�1, which is attributed to the double ring external

Figure 2. FESEM images of zeolites (a) Y (magnification: �50,000), (b) ZSM-5 (magnification: �85,000), (c) Y-ZSM-5 hybrid (magni-
fication: �35,000), and (d) Y/ZSM-5 composite (magnification: �35,000). FESEM: field-emission scanning electron microscopy.
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linkage peak associated with the FAU structure. Neverthe-

less, the band at 550 cm�1 of zeolite ZSM-5 is due to

vibrations related to the double five-membered rings lattice

of the external linkages, which are sensitive to the frame-

work structure. As shown in Figure 3, zeolite Y shows a

sharp medium band at 768 cm�1, assigned to internal tetra-

hedral symmetrical stretching, while zeolite ZSM-5, Y-

ZSM-5 hybrid, and Y/ZSM-5 composite show bands at

higher wavenumber around 788�797 cm�1, attributed to

the symmetric stretching of the external linkages. Mean-

while, for the Y-ZSM-5 hybrid and Y/ZSM-5 composite,

the band at 570 cm�1 is weakened and shifted to lower

wavenumber of 551 and 559 cm�1, respectively. The result

suggests that the framework of zeolite Y is broken with the

simultaneous formation of ZSM-5 phases, specifically for

zeolite Y-ZSM-5 hybrid, as confirmed by XRD analysis.

The strength and amount of acidity of zeolite catalysts

are evaluated by the NH3-TPD. Figure 4 shows the NH3-

TPD curves and total surface acidity of the prepared zeolite

catalysts. It is observed that two NH3 desorption peaks are

detected in the range of 150–300�C and 300–600�C,

assigned to weak and strong acidity, respectively. Quanti-

tatively, zeolite Y exhibits a maximum number of acid sites

(1.177 mmol g–1) higher than measured in zeolite ZSM-5

(0.683 mmol g–1). However, the total acid concentration of

synthesized Y-ZSM-5 hybrid and Y/ZSM-5 composite is

0.443 and 0.409 mmol g–1, respectively, which are lower

than the parent zeolites.

Catalytic performance

Figure 5 shows the selectivity and yield of liquid product

composition after the reaction of palm oil over zeolites Y,

ZSM-5, Y-ZSM-5 hybrid, and Y/ZSM-5 composite as cat-

alysts. Generally, the conversion of palm oil to jet biofuel

was >70% for all the reactions. Liquid jet biofuel, solid

carbonaceous residue (char) from thermal degradation, and

noncondensable gas were the main products of the reac-

tions. A high yield of jet biofuel (42 wt%) was obtained

over zeolite Y catalyst with hydrocarbon selectivity of

91%. The high selectivity of hydrocarbon products over

zeolite Y is due to the high amount of acid sites present

and its pore size.30 Comparatively, the yield of jet biofuel

over zeolite ZSM-5 catalyst is 32 wt% and the selectivity

for hydrocarbon is 74%. The smaller pore size of ZSM-5

(0.54 nm) as compared to the zeolite Y (0.74 nm) limits the

diffusion of large molecules of palm oil fatty acid, forcing

them to be cracked into shorter chain hydrocarbons at the

outer surface of the catalyst. The large fatty acids were not

able to diffuse in the pore and access the active sites, result-

ing in low conversion to hydrocarbon compounds. Evi-

dently, the large pore size of zeolite Y enhanced

diffusion of deoxygenated fatty acids in the pores and

cracking into short hydrocarbon chains.

Interestingly, GC-MS analysis shows that the conver-

sion of palm oil using zeolites Y-ZSM-5 hybrid (99%) and

Y/ZSM-5 composite (96%) resulted in a remarkably

enhanced production of hydrocarbon compounds. Never-

theless, the yield of liquid jet biofuel product decreased to

41 and 36 wt% over zeolite Y-ZSM-5 hybrid and Y/ZSM-5

composite, respectively, presumably to the decreasing con-

centration of acid sites. This indicates that the amount of

acid sites plays an important role in determining the yield

of liquid jet biofuel product.

FTIR spectra of palm oil and jet biofuel products are

shown in Figure 6. The FTIR spectra of palm oil show a
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very intense band at 1746 cm–1, characteristic of the C¼O

stretch in esters that are predominantly found in palmist

fats. After the reaction, there was a reduction of the band

at 1712 cm–1, which is attributed to the C¼O stretch of

carboxylic acids, the primary components of palmist fat

hydrolysate.31 Comparatively, an intense band at 1712

cm–1 was detected in jet biofuel over zeolite ZSM-5 cata-

lyst, confirming the presence of carboxylic acids, as

observed by the GC-MS. The intensity of the band

decreased significantly when zeolite Y-ZSM-5 hybrid cat-

alyst was used, suggesting that the deoxygenation process

occurred with high efficiency. Nevertheless, palm oil was

not fully converted into hydrocarbon compounds since the

C¼O band did not completely disappear after the reaction.

Typically, commercial jet fuel consists of three main

components, including alkanes, cyclic alkanes, and aro-

matic hydrocarbons.32 As shown in Figure 7(a), jet biofuel

converted from palm oil contained a mixture of straight

chain, iso- and cyclo-alkanes as well as aromatic hydrocar-

bons. Zeolite Y presented a high selectivity of n-alkane

(51%) and the lowest selectivity of aromatic hydrocarbons

(25%). Selectivity of jet biofuel alkane range and aromatic

hydrocarbons over ZSM-5 catalyst is 56% and 26%,

respectively. Although ZSM-5 shows high selectivity of

n-alkane, the low yield of jet biofuel product makes this

catalyst less efficient than zeolite Y.

In contrast, selectivity of n-alkane decreased to 45%
over zeolite Y/ZSM-5 composite catalyst, while the selec-

tivity of aromatic hydrocarbons was increased to 41%.

Meanwhile, zeolite Y-ZSM-5 hybrid catalyst shows the

lowest selectivity of n-alkane (30%), while the formation

of aromatic hydrocarbons significantly increased to

approximately 57%. This could be due to the contribution

of two different pore structures. It is assumed that the use of

zeolite Y as nutrients for the growth of ZSM-5 causes

partial blockage of the largest pores. This suggests that

large fatty acid molecules were deoxygenated into long-

carbon chains in the cages or on the outer surface of zeolite

Y and ZSM-5. Then, the long hydrocarbon chains were

able to diffuse after being cracked into short-carbon chain

alkanes (C14–C20) in the pore of zeolite Y. On the other

hand, the reduced pore size of zeolite ZSM-5 due to partial

blockage hampered the diffusion of the longer alkane

unless they were further cracked into shorter carbon chains

(C9–C13) and aromatic hydrocarbons. It should be

reminded that an increasing number of aromatics would

decrease the quality of jet biofuel.

Figure 7(b) depicts the distribution of C9–C20 alkanes

and aromatics over different catalysts. Fatty acids in palm

oil successfully decomposed into hydrocarbon of different
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alkane range. As shown in Figure 7(b), C9–C14 alkanes are

the main products of hydrocarbon cracking over zeolite Y

and ZSM-5 catalyst. Meanwhile, zeolites Y-ZSM-5 hybrid

and Y/ZSM-5 composite catalysts resulted in the lowest

and highest distribution of jet biofuel range alkane and

aromatic hydrocarbons, respectively. Therefore, the result

shows that catalytic conversion of palm oil to jet biofuel

involves deoxygenation of fatty acids through decarbony-

lation or decarboxylation into high molecular straight-

chain alkanes (C15–C20), cracking into C9–C14 alkanes,

and dehydrogenation into aromatic hydrocarbons through

aromatization with H-transfer. The presence of C18–C20

alkanes over zeolite Y-ZSM-5 hybrid catalyst indicates that

after deoxygenation, some of the hydrocarbons were not

cracked into short-chain alkanes.

Figure 8(a) shows the product distribution of C9–C18

alkanes over different catalysts. These observations are the

key points to propose the reaction pathway for the
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conversion of fatty acid in palm oil into jet biofuels. Zeo-

lites Y, Y-ZSM-5 hybrid, and Y/ZSM-5 composite produce

a higher distribution of heavy chain alkanes (C11–C15)

than zeolite ZSM-5. By contrast, zeolite ZSM-5 shows the

highest distribution of light chain alkanes (C9) probably

due to the smaller pore size leading to increased selectivity

of light hydrocarbons. As shown in Figure 8(a), the heavy

oxygen-free long-chain alkane needs to be cracked further

into C9–C14 lighter alkanes to meet the strict jet fuel

requirements.

The reaction pathway is proposed in Figure 8(b). The jet

biofuel products from palm oil contain a considerable

amount of odd carbon atoms (C13, C15, and C17), wherein

the fatty acids only contain compounds with even number

of carbons (C16 and C18). The alkanes with an odd number

of carbons (heptadecane, pentadecane, and tridecane) are

associated with decarboxylation and decarbonylation

mechanisms, which produce alkanes with one less carbon

than the original fatty acids. Nevertheless, hydrodeoxy-

genation process also occurred since hydrogen was sup-

plied in the reaction resulted in a small amount of

hexadecane (C16) and octadecane (C18), the same carbon

atom of fatty acids. Then, the long-chain alkanes go

through catalytic cracking in the presence of shape-

selective zeolite catalysts to form alkanes in the range of

nonane (C9) to dodecane (C12). The alkanes were further

aromatized into aromatics with short-carbon chains,

namely benzene, p/m-xylene, indane, and naphthalene.

This study clearly shows that the jet biofuel (9–15 carbon

atoms) consisting of straight-chain alkane, cyclic alkane,

and aromatic hydrocarbon can be synthesized using palm

oil in the presence of zeolites Y and ZSM-5 catalysts.

However, further study is required to measure the recycl-

ability of the above catalysts and prove its suitability for

industrial applications.

Conclusions

In summary, a simple route was successfully developed for

directly producing C9–C18 alkane, cyclo- and aromatic

hydrocarbons from palm oil using heterogeneous zeolite

catalysts in the presence of hydrogen in a fast pyrolysis

process. A jet biofuel fraction from palm oil was enhanced

over zeolite Y catalyst by increasing the distribution of jet

range alkane and decreasing jet range aromatic hydrocar-

bon. The distribution of aromatic hydrocarbon range

increased remarkably using zeolites Y-ZSM-5 hybrid

(57%) and Y/ZSM-5 composite catalysts (41%). The high-

est conversion of palm oil to hydrocarbon compounds was

achieved by zeolite Y-ZSM-5 hybrid catalyst (99%), fol-

lowed by zeolite Y/ZSM-5 composite (96%), zeolite Y

(91%), and zeolite ZSM-5 (74%). Zeolite Y-ZSM-5 hybrid

is a suitable catalyst to convert all types of compounds in

the palm oil to alkanes and aromatic hydrocarbons. Fatty

acids in palm oil can be converted to liquid hydrocarbons

by deoxygenation (decarboxylation, decarbonylation, and

hydrodeoxygenation), where decarboxylation and decarbo-

nylation are the dominant reaction pathways, in addition to

catalytic cracking and aromatization process. The recycl-

ability of the samples should be measured to prove that the

catalysts studied are suitable for industrial applications.
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