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Abstract

This work focused on the influence of carbon nanotubes (CNT) to the microstructural properties of
Zn,Si0,4/CNT (ZSO/CNT) composite. CNT was synthesized via alcohol catalytic chemical vapor
deposition (ACCVD) using cobalt oxide as catalyst and ethanol as carbon source. Zinc silicate (ZSO)
glass was prepared from quenching the melted commercial waste glass bottle with zinc oxide powder.
ZS0O/CNT-x composites with various CNT concentration (0, 1, 2 and 3 wt%) was prepared through
introducing CNT into ZSO glass via dry processing technique followed by sintering process in Argon
gas (Ar) environment and atmospheric (atm) environment, respectively. FESEM, XRD and EDS were
employed to determine the surface morphology, phase composition and elemental distribution of
sintered sample. Crystallite trigonal willemite (Zn,SiO,) phase was observed from argon sintered
sample and the crystallite size of willemite phase in ZSO/CNT-3/Ar showed the most reduced lattice
strain 0f 22.85% compared to ZSO/CNT-0/Ar. In contrast, semi-crystalline phase exhibited in
atmospheric sintered sample resulted in high lattice strain. It is concluded that dry powder processing
and inert gas thermal treatment can be an effective technique in fabricating strain-reduced ceramics/
CNT composite without alternating the domain phase. Least internal strain in crystal lattice have
potential on enhancing the luminescence properties of phosphor material and lattice thermal
conductivity of thermoelectric material.

1. Introduction

Application of carbon nanotubes (CNT) into ceramics matrix, forming CNT/ceramics composite with
enhanced thermal [1-3], electrical [4—6], and optical [7, 8] properties drew great demand in this rapid scientific
development. Dry powder processing technique was the first and commonly used in fabrication of carbon
nanotubes (CNT) with different host matrix such as ceramics and metal in forming composite with enhanced
properties. This process was conducted by mixing CNT and the inorganic matrix in milling or manual mixing
system. Although dry powder processing faced inhomogeneous CNT dispersion and least interfacial bonding
between CNT and inorganic matrix [9], researchers introduced several effective milling process [6, 10] and
thermal treatment such as spark plasma sintering [11] and low pressure sintering [12], which helped to solve the
bottleneck in fabricating desirable CNT composite.

Beside the enhanced properties stated above, CNT plays main role in reinforcing the mechanical properties
of domain matrix with very limited amount of CNT needed [13, 14]. Mazaheri et al stated the improving in
Vickers hardness and Young’s modulus was due to the pinning effect of CNT [15]. Pinning effect of CNT was
located in the grain boundary, restricting the sliding and lowered the mechanical loss. Furthermore, Bi et al
recommended flexural strength of CNT /AL, O3 composite was improved with obtaining small grain size leads to
strong interfacial connection between CNT and Al,O; [16]. However, these studies were based on the synergetic

© 2020 The Author(s). Published by IOP Publishing Ltd
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Figure 1. Schematic setup diagram for 30 min ACCVD with 50 sccm Arand 5 sccm H,.

effect of CNT at the grain boundary without noticing the effect of CNT towards the microstructure of the
respected domain phase.

The presence of lattice strain in the microstructure of materials played significant role in mechanical
performance and the phase information to the domain phase especially for glass-ceramics silica-based material.
Willemite (crystallite Zn,SiO,) is a type of silica-based glass-ceramics which exhibited low thermal conductivity
and green light emission (585 nm) with the excitation of UV. Zn,Si0, exhibited glass structure at low
temperature thermal treatment and initiated crystallization at high temperature [17]. When external (high
temperature needed) and internal (low thermal conductivity of glassy Si-based material) factors decelerated the
crystallization, crystallite size decreased in the matrix system, leaded to increase in lattice strain and low degree
phase transition of glassy to crystalline phase [18, 19]. Hence, limiting lattice strain without phase modification
in stable lattice dislocations of Zn,SiO, potentially advancing the thermoelectric behaviour [20, 21] and narrow
bandwidth emission with high quantum efficiency [22] of the material towards highly functional light emitting
diode (LED) application.

In this research, we introduced the cobalt-catalysed CNT as fillers to parent zinc silicate glass powder (ZSO).
Sintering process was conducted in controlled argon flow environment in reducing the lattice strain and
improving the crystallite size of the crystallite phase. To show comparison with conventional glass-ceramic
material synthesis process, ZSO sample with CNT addition were also sintered in atmospheric environment.

2. Materials and methodology

2.1. Materials

Ethyl alcohol (ethanol, C,HsOH, 99.8% AR grade, 46.07 g mol ', R&M Chemicals), Cobalt (ILIIT) Oxide
nanopowder (Co30,, <50 nm particle size, 99.5% trace metal basis, Sigma Aldrich) and Zinc oxide powder
(Zn0, 99.99% metal basis, Alfa Aesar) were purchased. Waste soda lime silicate (SLS) glass bottle was harvested
from commercial used ketchup bottle (Life tomato ketchup, 485 g, Region Food Industries, Malaysia).

2.2. Synthesis of carbon nanotubes (CNT)

CNT was synthesized from Co30, as metal catalyst and ethanol as carbon precursor through alcohol catalytic
chemical vapor deposition (ACCVD). Co;0,4 powder was weighed and sintered up to 800 °C with ramping rate
10°C min™~" in tubular furnace with argon gas flowing (Ar, 50 sccm) in ensuring inert gas environment. At

800 °C, vaporized ethanol and hydrogen gas (H,, 5 sccm) was introduced into the furnace for 30 min of reaction
time. The sample was then annealed to ambient temperature in inert environment. ACCVD was setup as

figure 1.

2.3. Parent zinc silicate glass (ZSO)

Harvested SLS glass bottle was cleaned, crushed, milled and sieved until the glass powder reached 45 yum. Micron
sized SLS powder was mixed with ZnO nanopowder at ratio 1:1 and melted in electrical box furnace at 1400 °C
for 3 haas figure 2. The melted SLS/ZnO liquid was water-quenched into glass fritz [17]. Glass fritz was milled
into 45 pm powder labelled as ZSO glass powder.

2.4.ZSO/CNT composites via dry prowder processing

ZS0 glass powder was well mixed with CNT with varying concentrations (0, 1, 2 and 3 wt%) as in table 1 and

0.5 g of mixed powder were processed with pelleting process under 5 tonnes pelleting force for 10 min using
PVA as binding agent. This pelleting process produced pellet with 3.0 mm thickness. The pellet was labelled as
7ZS0/CNT-x as x indicated the weight percentage of CNT. The pellets was sintered in tubular furnace with Ar
gas flowing at 50 sccm. The heating rate was set at 10 °C min~ ' and held at 800 °C for 2 h. Identical pellet samples

2
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Figure 2. ZnO and SLS mixing and melting process with parameters.
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Figure 3. ZSO/CNT-x sintered for 2 h in (a) controlled Argon flow (50 sccm) and (b) atmospheric environment.

Table 1. Composition of mixed powder.

Sample ZS50 mass (g) CNT concentration (wt%) CNT mass (g) CNT:ZSO
ZS0O/CNT-0 20 0 0.00 0:100
ZSO/CNT-1 20 1 0.20 1:99
ZSO/CNT-2 20 2 0.40 2:98
ZSO/CNT-3 20 3 0.60 3:97

were sintered in atmospheric environment with identical sintering parameter. ZSO/CNT-x/Ar and ZSO/CNT-
x/atm was labelled as sintered sample under argon gas and atmospheric environment, respectively. Figure 3
showed the setup of argon gas sintering and atmospheric sintering.

2.5. Characterization
The surface morphologies of CNT and sintered pellet samples were characterized by a field emission scanning

electron microscope (FESEM, JSM-7600F, JEOL, Japan) with an Energy Dispersive x-ray Spectrometer detector
(EDS, INCA, Oxford, UK) attached to observe the elemental distributions. X-ray diffractometer (XRD-6000,
SHIMADZU, Japan) was utilized to determine the phase composition of samples.
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2.6. Crystallite size (7) and lattice strain (¢) calculation
Crystallite size (1) and lattice strain (¢) of domain crystalline phase in sample were measured with Williamson-
Hall equation [23] and compared with Scherrer equation [24].

By applying Williamson-Hall (W-H) equation, a correlation between crystallite size (Ty) and lattice strain
(ewn) was setup. Two extra calculation had been made to W-H equation: neglecting the lattice strain (ewn = 0)
and limiting crystallite size to infinite value (twy — 00). With ewy = 0, the W-H equation calculated crystallite
size without lattice strain was labelled as 7. In contrast, W-H equation calculated lattice strain as crystallite size
to infinite value was indicated as &,

Equation (1) shows Williamson-Hall equation for crystallite size (7vy) and lattice strain (eyy) calculation.
Crystallite size only (1) (2) was calculated as the lattice strain was neglected and lattice strain only (&) (3) was
calculated as the crystallite size to infinite value.

0B cos 0 = 4ewy sin 0 + k—>\ (1)
TWH
kX
= — & = 2
To 3 cos 0 WH 2
0B cos 6
= > 3
0 4sin 6 Wi T oo )

Average experimental crystallite size (Texp) (4) and strain (€.yp,) (5) was calculated from measured Full Width
Half Maxima () and Bragg’s angle in radian (6) of crystallite planes, where k is the dimensionless shape factor
(0.9) and A is the wavelength of CuK« x-ray (0.154 nm).

kA
exp — . 4
Texp 3 cos 6 @
B
exp — 5
Ferp 4 tan 0 )

3. Results and discussions

3.1. Phase composition, phase shifting and peak narrowing

XRD analysis was employed on the CNT filler, argon sintered sample (ZSO/CNT-x/Ar) and atmospheric
sintered sample (ZSO/CNT-x/atm), to determine the phase compositions (refer to figures 4 and 5). Crystalline
phase shifting was only observed in ZSO/CNT-x/Ar while semi-crystalline phase and amorphous phase were
observed in ZSO/CNT-x/atm without phase shifting.

Phase and surface formation of CNT (CNT spectrum in figure 4) were analyzed at the first stage. Metal
carbides is the well-known product from the reaction between metal and carbon. In this case shown, there is no
formation of cobalt carbides from the phase spectrum. There are 3 sharp peaks found in the XRD spectrum
which respect to cubic a-cobalt: 44.34°, 51.60° and 75.95° respect to (111), (002) and (020) planes. During the
30 min reaction time (800 °C), H, gas acted as the carrier gas for vaporized ethanol and the reducing agent onto
the Co;0, catalyst. The oxidation number of Co;0,4 (can be written as CoO-Co,03) reduced from +2 and +3 to
neutral. However, some of the reduced cobalt didn’t react with the carbon atom from the vaporized ethanol
remains cobalt particle without any carbon capsulation contributes to the phase of a-cobalt [25].

From figures 4, 2 h sintering process at 800 °C provided ZSO glass sufficient energy in rearranging the
silicate, zinc and oxygen ion from glassy structure (water-quenched sample) into crystallite trigonal willemite
phase (Zn,SiO,, space group = R3). Impurities like magnesium (Mg) and calcium (Ca) found in SLS bottle
melted and alloyed with silicate towards minor crystalline phase of tetragonal akermanite (Ca,MgSi, O, space
group = P421m). The presence of minor ceramics in the composite: Akermanite, due to the impurities within
the glass bottles during the industrial manufacturing process to improve the mechanical properties of the bottles
[26]. Amorphous carbon peak and crystallite alpha-cobalt (a-Co) was found in CNT and ZSO/CNT-x/Ar. Inert
gas such as Ar gas preserved the CNT from decomposing under high temperature or reacted with flowing gas.
Broad peak of hexagonal carbon peak at 26° indicated crystallite graphite (002) plane which overlapped with

4
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Figure 4. XRD spectrum of synthesised CNT and Argon environment sintered sample, ZSO/CNT-x Ar where x indicated the
concentration of CNT.
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Figure 5. XRD spectrum of synthesized CNT and atmospheric environment sintered sample, ZSO/CNT-x/atm where x indicated the
weight percentage of CNT.

(420) plane of hexagonal Zn,SiO,4 phase. This phase overlapping phenomenon at same Bragg’s angle resulted the
increase of intensity at the 26 position.

In figure 5, semi-crystalline phase existed in atmospheric sintered sample as the CNT concentration
increased and amorphous phase for ZSO/CNT-3/atm sample. The possible explanation for this glassy phase
formation is the decomposition of CNT under oxygen decomposition at high temperature. Near 20% oxygen
contained in atmospheric air invaded the graphite layers of CNT and converted into carbon gaseous, leaving the
Co particles reacted with the silicate ion in the pellet. After sintering at 800 °C for 2 h, the cobalt-silicate
compound remained as glassy state, was believed the crystallite temperature of this ceramics is higher than
800°C[27,28].

Increasing of W-H calculated crystallite size showed relationship with phase shifting to left observed in the
XRD spectrum (figure 6). Phase left-shifting indicates increased in crystallite size based on Scherrer equation.
However, phase shifting is not the only parameters in crystallite size determination. In addition, the crystallite
size was influenced by the S value (FWHM). FWHM values against plane of ZSO/CNT-x/Ar was plotted as in
figure 7. Several major planes of crystallite willemite phase was selected in this plotting, showing the FWHM
distribution of ZSO/CNT-x/Ar in the range 0of 0.198°-0.396° (26 in degree). ZSO/CNT-3/Ar show the lowest
FWHM distribution which is in the range of 0.198°-0.317°, resulting the largest crystallite size and lowest lattice
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Figure 6. Phase shifting of ZSO/CNT-x/Ar respected with various CNT concentration. Phase left-shifting in XRD spectrum indicates
the increasing in crystallite size based on Scherrer equation.
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Figure 7. FWHM distribution of major (hkl) plane in ZSO/CNT-x/Ar.

Table 2. W-H equation calculated crystallite size (v and 7o in nm) and lattice strain (ewy (X 10" and ey (x10>)) of ZSO/CNT-x/Ar
and Scherrer equation calculated crystallite size (ey, in nm) and lattice strain (€., (x 10~)) as comparison. Change of crystallite size and
lattice strain (%) for CNT-added sample was calculated respected to ZSO/CNT-0/Ar.

Williamson-Hall equation calculated Scherrer equation calculated
Ar sintered
Sample TWH EWH TwH(%) ewn(%) To &0 T0(%) €0(%) Texp Eexp Texp(%) Eexp(o/o)
ZSO/CNT-0 105.93  0.75 — — 54.85 1.48 — — 5991 1.64 — —
ZSO/CNT-1 11191  0.82 +5.65 +9.93 55.29  1.53 +0.80 +3.38 58.76  1.69 —1.92 +3.00
ZSO/CNT-2 62.51 0.42 —40.99 —44.33  48.02 1.67 —1246 +12.84 4996 7.84 —16.61 +377.34
ZSO/CNT-3 105.13  0.58 —0.76 —22.85 6140 132 +11.95 —10.81 65.12 149 +8.69 —9.32

strain. With applying Williamson-Hall equation (table 2), the Ty and ey of ZSO/CNT-1/Ar showed the
highest value (111.91 nm with 0.822 x 10~ %) while ZSO/CNT-2/Ar contributed the smallest crystallite size and
strain which is 62.508 nm with 0.416 x 107> strain. With neglected the lattice strain of willemite phase, the
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hexagonal phase showed the value of 7 similar with 7, and ZSO/CNT-3/Ar showed the crystallite size of
61.402 nm. The lattice strain of ZSO/CNT-3 /Ar showed the lowest value which is 1.32 x 10°.

W-H calculated 7 and &, was compared with Scherrer equation calculated 7¢,;, and €cy,. The results showed
similar result indicating ZSO/CNT-2/Ar has the smallest crystallite size and highest lattice strain. However, €.y,
and €y of ZSO/CNT-2/Ar show the strain up to 377% and 12.84% compared to ZSO,/CNT-0/Ar respected to
the identical phase in the system. This gives the €, in W-H calculation having higher accuracy in calculating the
homogenous distortion in the system with the consideration of crystallite expands to infinite value while €.y,
calculated the average strain between phases standalone without taking the expanding of crystallite into account.

From XRD spectrum of ZSO/CNT-x/atm sample (figure 5), only crystalline willemite phase was considered
in crystallite size determination. ZSO/CNT-0/atm showed Ty 0£0.63 X 1077 eyg with 109.27 nm Ty,
differed 21.33% and 3.15% in lattice strain and crystallite size, as comparing to ZSO/CNT-0/Ar. The crystallite
hexagonal willemite phase was not achieved as the CNT concentration increased but semi-crystallite willemite
phase was observed, and the crystallite size and the lattice strain were calculated. The calculated lattice strain
(€exps Ewn and £¢) increased as the crystallite size (Texp, Twi and 7o) of willemite phase was decreased (table 3).
Semi-crystallite willemite phase and amorphous state in ZSO/CNT-x/atm with increasing CNT showed great in
lattice strain as the silicate ion was partly reacted with the exposed cobalt after the graphite layers was invaded by
oxygen radical at high temperature. Glassy cobalt-silicate compound reduced the crystalline phase of zinc-
silicate towards willemite phase formation.

Reducing lattice strain (lattice distortion and imperfections in crystal matrix) with enhancing the crystallite
size was reported in [29, 30], showing the relationship of crystallite size and lattice strain. CNT with high thermal
conductivity (600-750 W mK ") and high melting point (>3000 °C) enhance the thermal energy transport
from the external heat source (heating coil of the furnace) to the host matrix without changing the carbon
structure leads to enhance the crystallite size [2, 31]. Near homogenized distribution of 3 wt% CNT in ZSO/
CNT-3/Ar composite showed the least phase left-shifting and resulted the reduced lattice strain with enlarging
crystallite size without changing the domain phase of crystal.

3.2. Microscopic observation and element distribution

Figure 8 shows the morphology of the ZSO/CNT/Ar which is observed by FESEM. Figure 8(e) shows
microscopy image of CNT with worm-liked fibrous structure (averaged diameter 23.08 + 5.45 nm), similar
with CNT [32, 33] and carbon bulks structure exist in the sample, which is in agreement to XRD results. CNT are
crystalline carbon plane with hexagonal structure and rolled into tubular shape while amorphous carbon shows
random orientation of carbon particle. The nano sized of CNT and the dominating amorphous carbon are the
reasons behind obtaining a broadening carbon peak from the XRD spectrum.

From figures 8(a)—(d), the surface morphology of ZSO/CNT-x/Ar were observed. CNT was well dispersed
into the glass powder as the non-uniform morphology and size of the glass particle due to the manual crushing
and grinding process (particle size distribution refers to table 4). The size of CNT was relatively small (nano-
sized) to the glass particle (micron-sized) as the CNT capable to fill in the gap between the glass particle. CNT
filled in the gap between the glass particle in form of bundle as shown in inset image of figures 8(a)—(d). This
showed the agglomeration of the CNT due to the small size of the cobalt catalyst and the CNT. Cobalt particles
and nanotubes needed energy to achieve thermodynamically stable which cannot be achieved individually due
to small size. During agglomeration in dry powder state, individual nanotubes and particles contribute energy
and shared with neighbours to overcome energy insufficient [34, 35]. Figure 9 shows the morphology of ZSO/
CNT-x/atm. There is agglomeration of cobalt particles (smaller particles, 66.754 £+ 24.807 nm) without worm
like structure attached on the semi-crystallite glass grain (bigger particles, 123.37 £+ 76.89 nm). Semi-crystallite
and glassy structure below crystallite temperature obtained insufficient energy in nucleation but sufficient
energy in melting and fusing, comes with greater particle size compare to ZSO/CNT-0/atm (2.95 £ 0.10 ym).
The detailed particle size distribution of ZSO/CNT-x/Ar and ZSO/CNT-x/atm were displayed in table 4.

Elemental analysis of the composite was done via EDS detector onto five sample: ZSO/CNT-0/Ar, ZSO/
CNT-3/Ar, ZSO/CNT-0/atm, ZSO/CNT-3/atm and CNT (figures 10(a)—(e)). Atomic ratio of carbon to cobalt
is about 6:1, means one mol of cobalt atom capable in producing six mol of carbon nanomaterials. ZSO/CNT-
0/Ar without any addition of CNT results 16.15 at% of carbon content referring to table 5. This is believed due
to the manufacturing of glass bottle is exposed to atmospheric carbon content as the carbon atom diffuse into
the glass and the remaining PVA binding agent. Impurities like 3.71% aluminium is believed to be the
mechanical properties enhancer during the manufacturing of glass bottle [26]. The ratio 1:3 of Si: Zn is due to the
60% SiO, in SLS glass reacts with mass ratio 1:1 of ZnO. Table 5 showed the carbon content dominating the
other elements, having a composition of 61.05% with 3 wt% CNT added. The density of CNT is low [36], while
the volume of CNT added is large with 3 wt% per mass of ZnO/SLS powder. The impurified CNT contains not
only CNT, but amorphous carbon and different carbon nanomaterials.
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Table 3. W-H equation calculated crystallite size (v and 7o in nm) and lattice strain (ewy (x 10 ) and g4 (x 10~?)) of ZSO/CNT-x/atm and Scherrer equation calculated crystallite size (Texp in nm) and lattice strain (g (X 107%))as
comparison. Change of crystallite size and lattice strain (%) for CNT-added sample was calculated respected to ZSO/CNT-0/atm.

Williamson-Hall equation calculated Scherrer equation calculated
atm sintered sample TwH ewn Twi (%) ewn (%) To €0 70(%) £0(%) Texp Eexp Texp (%) Eexp(%)
ZSO/CNT-0 109.27 0.63 —_ —_ 60.60 1.35 —_ — 63.61 1.52 — —
ZSO/CNT-1 78.85 0.48 —38.58 —24.27 45.35 2.07 —25.16 +53.33 60.42 2.14 —5.02 +40.94
ZSO/CNT-2 37.71 —0.01 —90.76 —100.83 37.81 2.57 —37.60 +90.37 41.95 3.39 —34.04 +123.17
ZSO/CNT-3 15.66 —0.87 —118.72 —237.52 18.43 4.07 —69.59 +201.48 18.52 6.18 —70.88 +306.95
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Figure 8. FESEM micrograph of (a)—(d) ZSO/CNT-x/Ar withx = 0, 1, 2, and 3 wt% and (e) synthesised CNT. The inset of (a)—(d)
show high magnification of X 100 000 while the inset of (e) show magnification of x25 000.

\Glassy. |
Structure

Figure 9. FESEM micrograph of atmospheric sintered ZSO /CNT-x: (a)—(d) 0, 1, 2 and 3 wt% CNT addition. The inset of (a)—(c) show
high magnification of X100 000 while the inset of (d) show magnification of x 10 000. Glassy ZSO/CNT-3/atm composite with poor
electron conductive characteristics resulted blurry micrograph above x 10 000 magnification.

Table 4. CNT diameter, Co and ZSO
particle sizes distribution in ZSO/CNT-x

composite.

Sample Particle size (m)
7SO/CNT-0/Ar 16.83 % 12.60
ZSO/CNT-1/Ar 17.31 + 8.75
ZSO/CNT-2/Ar 16.54 + 6.4
7SO/CNT-3/Ar 19.64 + 8.74
ZSO/CNT-0/atm 2.95 £ 0.10
ZSO/CNT-1/atm 19.21 + 7.46
ZSO/CNT-2/atm 123.37 + 76.90
ZSO/CNT-3/atm 125.46 + 60.49
Co particle (nm) 66.75 + 24.81
CNT diameter (nm) 23.08 4+ 5.45

4. Conclusions

In this study, ZSO/CNT composite was successfully synthesized via dry powder processing technique.
Introduction of 3 wt% CNT into ZSO helped in reducing lattice strain of crystallite willemite phase for 22.85%
as compared to ZSO without CNT addition. The willemite phase remained unchanged while sintered with
higher CNT concentration in Argon gas environment. Atmospheric sintered sample with increasing CNT
addition resulted in amorphous structure as the cobalt catalyst reacted with the silicate domain, resulted glassy
structure with higher crystallite temperature. We concluded dry powder processing and inert gas sintering
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Figure 10. EDX spectrum of argon sintered ZSO/CNT with (a) without CNT addition and (b) with 3 wt% CNT addition, atmospheric
sintered ZSO/CNT with (c) without CNT addition and (d) with 3 wt% CNT addition, and synthesised CNT.

Table 5. Element Analysis of sintered pellet and CNT.

Element composition (wt%)

Sample C ¢} Al Si Ca Co Zn
ZSO/CNT-0/Ar 18.22 39.30 4.95 8.84 — — 28.69
ZSO/CNT-3/Ar 66.06 13.75 2.29 5.07 —_ 11.77 1.06
ZSO/CNT-0/atm — 37.64 3.10 14.90 4.34 — 40.02
ZSO/CNT-3/atm 17.28 33.98 3.26 9.67 — 14.57 21.23
CNT 86.36 2.11 — — — 3.39 —

process can be efficient in introducing CNT into glassy zinc silicate and phase-changed into crystallite willemite
with limiting lattice strain and preserving the domain phase.
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