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Abstract: The development of ankle foot orthoses (AFO)
for lower limb rehabilitation have received significant
attention over the past decades. Recently, passive AFO
equipped with magnetorheological brake had been devel-
oped based on ankle angle and electromyography (EMG)
signals. Nonetheless, the EMG signals were categorized in
stance and swing phases through visual observation as the
signals are stochastic. Therefore, this study aims to clas-
sify the pattern of EMG signals during stance and swing
phases. Seven-time domains features will be extracted and
fed into artificial neural network (ANN) as a classifier. Two
different training algorithms of ANN namely Levenberg-
Marquardt (LM) and Scaled Conjugate Gradient (SCG) will
be applied. As number of inputs will affect the classifica-
tion performance of ANN, different number of input fea-
tures will be employed. In this study, three participants
were recruited and walk on the treadmills for 60 seconds
by constant the speed. The ANN model was designed with
2, 10, 12, and 14 inputs features with LM and SCG training
algorithms. Then, the ANN was trained ten times and the
performances of each inputs features were measured us-
ing classification rate of training, testing, validation and
overall. This study found that all the inputs with LM train-
ing algorithm gained more than 2% average classification
rate than SCG training algorithm. On the other hand, clas-
sification accuracy of 10, 12 and 14 inputs were 5% higher
than 2 inputs. It can be concluded that LM training algo-
rithm of ANN was performed better than SCG algorithm
with at least 10 inputs.
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1 Introduction

Stroke may cause locomotion impairment and affect hu-
man body in different ways that can lead to cause of death.
According to National Stroke Association of Malaysia, ap-
proximately 40,000 of stroke cases are reported each
year [1]. A syndrome known as foot drop frequently occurs
unilaterally in connection with stroke. It happens due to
partial or total central paralysis of the muscles on lower
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leg. Foot drop patients unable to control the movement at
the ankle inward and outward as they suffered from un-
controlled plantar flexion and dysfunctional dorsiflexion
that effect the gait pattern. The swinging action and incli-
nation of a body for foot drop patients become larger than
normal gait during swing phase in order to avoid a losing
balance on the ground. Consequently, the stance phase is
not detected. An enhancement on gait pattern of foot drop
patients could be done through physical therapy during re-
habilitations.

Rehabilitation is a major therapeutic approach as the
motor performance functional deficits of patient can be
maximized and minimized, respectively. Generally, phys-
iotherapy and rehabilitation are carried out through re-
peating the exercises many times with the assistance of
one or more physiotherapists. Yet, the process of recov-
ery might be delayed due to the limited number of thera-
pists. Moher [2] discovered that an assistance through au-
tomated technical system enhance the physical activities
especially during rehabilitation. He introduced the control
system through Human Machine Interface (HMI) and effec-
tively demonstrated the systems used in the mechanism
of lower-limb orthoses. HMI such as orthoses have been
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designed with different types of actuators, interfaces, and
mechanical structures as practical complementary sys-
tems for therapists to handle impaired joints or limbs [3].

Nowadays, ankle foot orthoses (AFO) is mostly pre-
scribed to support the movement of lower leg which help
individuals to balance their body and walk in a more nat-
ural way. It was found an improvement was observed on
the ankle kinematics in early stance, toe-off and swing
phase but no effects were seen for knee kinematics in terms
of swing or hip kinematics [4]. In addition, there exists
a short-term effect on ankle movement early after stroke
using AFO [5]. The development of AFO can be grouped
into three types of joint such as rigid, flexible rigid, and
articulated AFO. For rigid and flexible AFO ankle joint, the
joint was fixed and more flexible, respectively. On the other
hand, the articulated AFO has a freely rotating ankle joint.
The mechanical properties of the articulated AFO are more
controllable compared to rigid and flexible rigid of AFO as
it equipped with an actuator [6].

The development of AFO based on the selection of ac-
tuator that can be divided into two types namely active and
passive. Active AFO support the leg movement using elec-
tronic actuators such as direct current motors, pneumat-
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ics, solenoids, and springs. Meanwhile, the passive AFO

assist the leg movements using actuators such as magne-

torheological (MR) dampers and brakes. Passive AFO are
had advantages in terms of weight optimization compared
with active AFO. In preventing the foot drop, passive AFO
become the main concern as the movement generator is
not needed as because the foot drop patient able to move
it by itself except during dorsiflexion. Therefore, a control-
lable AFO with a compact MR fluid brake had been devel-
oped based on accelerometer and angle of ankle for gait
training purpose [7]. By using similar approach of control,
work done by Adiputra et al. [8] replaced the accelerome-
ter with electromyography (EMG) signals and reduced the
gait phases from three to two and demonstrated the system
was applicable in prevention of foot drop. Nonetheless, the
main issue arises on interpretation of EMG signals during
two phases namely stance and swing phases as they cate-
gorized the signals through visual observation.

The EMG signals was reported to be useful for gait
phase detection since the lower extremity muscle activity
occurs in a repeatable way during gait cycle [9]. They de-
veloped an EMG based control system for passive AFO as
shown in Figure 1. The EMG signals reflect the electric cur-
rent that emanate from body muscles during contraction
and/or relaxation. For signal processing, there are three
stages namely pre-processing, feature extraction and clas-
sification. In order to obtain higher classification accuracy,
the selected features are the main kernel used in analyz-
ing EMG signals [10]. Although many research works have
mainly tried to explore and propose numerous EMG sig-
nals classification, there are only a few works that exam-
ined the appropriate features set to be extracted especially
for gait event, stance and swing phases.

Features in time domain (TD) have been widely
adopted because they do not need a transformation, as
they are calculated based on the raw EMG time series and
computational complexity is low. Previous work had re-
ported that different accuracies were obtained with single
and multiple of TD features. For single feature, mean ab-
solute value (MAV) is the most popular features and rec-
ommended in classifying EMG signals [11]. Another TD
feature such as maximum amplitude (MAX), standard de-
viation (SD), and root mean square (RMS) had shown a
good relationship with contractions of EMG signals [12].
Meanwhile, multiple feature of MAV, variance (VAR), wave-
form length (WL), slope sign changes and 4™ autoregres-
sive model identified the boundary locations for differ-
ent gait cycles [13]. In classifying the EMG signals during
stance and swing phases, it was found that five TD features,
MAV, SD, RMS, integrated EMG (IEMG), and WL gained
higher accuracy than single feature of MAV based on ar-
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tificial neural network (ANN) classifier [9]. However, com-
bination of MAV, SD, RMS, IEMG, WL, VAR, and MAX fea-
tures have not been explored. Thus, this study aims to ex-
tend the research by added another two TD features, VAR
and MAX and fed into ANN. As the different number of
inputs and training algorithm effect the performance of
ANN, the single and multiple feature sets are compared
with Levenberg-Marquardt (LM) and Scaled Conjugate Gra-
dient (SCG) training algorithm.

2 Methodology

Three healthy male subject age between 22 to 25 years old
from Shibaura Institute of Technology’s student popula-
tion were recruited with no history of nerve injuries that
may affected the walking pattern. This investigation fo-
cused on the lower leg and the participants were asked
to do some movements related to the selected muscles. In
this study, the detection of stance and swing phases are
based on the heel strike (HS) and toe off (TO) collected from
the footswitch data. Two force sensing resistors (FSR) of
footswitch devices were placed under the sole of the foot
beneath the hallux and heel after cleaning with wet tissues.
A tape was placed around the FSR for extra protection. The
footswitch data were recorded using Load Switch System
(DKH, Japan) device with an input range of + 10V and ac-
tivation force 0.3 N. The placement of both footswitch and
EMG signals are shown in Figure 2.
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Figure 2: Electrode placement of footswitch and EMG signals

Moving on, the EMG signals were recorded from tib-
ialis anterior (TA) and medial gastrocnemius (mGas) mus-
cles with a reference electrode at the patella, following
the Surface Electromyography for the Non-Invasive Assess-
ment recommendations. To detect the activation of mus-
cle contraction and verify the accuracy of the footswitch’s
outputs, the subjects had to perform dorsiflexion and plan-
tar flexion. The output of footswitch data become the ref-
erence of stance and swing phases for EMG signals. The
EMG signals were collected by using two-channelled EMG
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Figure 3: Experimental setup of this study
device (Nihon Kohden, Japan) and amplified by multichan- Table 1: All TD feature sets used in this study
nel amplifier with bandwidth filtering from 15 to 1000 Hz.
Both EMG signals and footswitch data were connected to 1D Features Symbol

64 Ch analog-to-digital converters (Model Z0-928, NAC,
Japan) and the sampling rate were set at 1000 Hz using
the Cortex software. Then, the participants were instructed
to walk on the treadmills for 60 seconds with a constant
speed as shown Figure 3.

The classification accuracy of EMG signals depends
greatly on the features extracted. There are seven TD fea-
tures were incorporated into this study which are RMS, SD,
MAV, IEMG, WL, VAR and MAX. As Oskoei and Hu [14]
proved that the performance of four combined features are
better than a single or two features for upper limb move-
ment, a single MAV features were compared with multiple
set of TD features and the details are shown in Table 1. The
TD features of TA and mGas muscles during stance and

swing phases in 30 cycles for each subject were extracted.

In total, 35000 datasets were computed and fed into the
classifier.

The information extracted from the features serves as
input for the classifiers. A classifier function is to map the
pattern and match the EMG signals appropriately in de-
termining the final output. Machine learning is closely re-

MAV C

RMS, SD, MAYV, IEMG, WL Group 1
RMS, SD, MAYV, IEMG, WL, VAR Group 4
RMS, MAYV, SD, IEMG, WL, MAX Group 5
RMS, MAYV, SD, IEMG, WL, MAX, VAR Group 6

lated with the study and construction of algorithms that
can learn from building model and make predictions on
data. An application of ANN began to appear for pattern
recognition and classification tasks as it is suitable for
modelling nonlinear data especially for EMG signals due
to its ability to cover the distinctions among different con-
ditions. The capability of ANN had been proven for up-
per limb movement with 91.2% classification accuracy by
using five TD features [15]. ANN also able to discriminate
different hand motions [16], neuromuscular diseases [17],
and risk of preterm deliveries using EMG signals [18].
Multilayer perceptron of ANN was used in this study
to evaluate the performance of each TD features. The ANN
model consists three layers of nodes needed which are in-
put layer, hidden layer and output layer. Input vector I with
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L rows can be denoted by iy, i3,...,ig. Each input was
weighted by correlative component wq,1, Wz,1,..., Ws, L
of the weight matrix, W1 which S1 is neurons number. As
aforementioned, two types of training algorithm that were
employed in this study; LM and SCG. The training input
data were randomly divided: 70% for training, 15% for val-
idation and 15% for testing. The ANN model was designed
with 2, 10, 12, and 14 inputs features with LM and SCG train-
ing algorithm. The ANN network for each of the TD features
was trained ten times and the classification performances
for training, testing, validation and overall were recorded.

3 Results and discussions

An example confusion matrix for LM and SCG training al-
gorithm of ANN model for Group 6 are shown in Figure 4.
The target class of the confusion matrix were denoted as
number 1 and 2 to represent the output class as stance
and swing phases, respectively. The light green cells pro-
vide the number of correctly classified while red cells for
unclassified numbers. In addition, average classification
was showed in grey cell while the total average of classi-
fication rate showed in blue cells. The percentage in each
cell shows the ratio of the number with total number of

Validation Confusion Matrix

Qutput Class
Qutput Class

Target Class Target Class

Test Confusion Matrix All Confusion Matrix

Qutput Class
OQutput Class

Target Class Target Class

(a)
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movements. It can be seen that the percentage difference
for training, test, validation and overall were small.

Table 2 and 3 represent the classification accuracy of
each TD feature sets for ten times by using LM and SCG
training algorithm, respectively. In the table, the classifi-
cation rate was divided into four; training, validation, test
and overall. The highest value of each train for each TD
feature sets were bolded. For both LM and SCG training al-
gorithm, the highest value was gained by Group 6 TD fea-
tures with 96.0% and 92.9%, respectively. Meanwhile, the
classification accuracy of was the lowest with 88.8% and
87.9% for LM and SCG training algorithm, respectively.

Figure 5 compared the average classification perfor-
mance of all TD features with different training algorithm
of ANN. Group 1, Group 4, Group 5 and Group 6 features
gained more than 92% of classification accuracy while C
features gained less than 87% for SCG training algorithm.
With 5% of difference, it can be concluded that C features
was not suggested for represent the EMG signals for gait
phases but performed well for hand movement as reported
by Phinyomark et al. [11]. Consistent with the literature,
this research found that multiple TD features performed
better than single TD features [9]. One interesting finding
of this study is the difference of classification accuracy be-
tween a combination of 5, 6 and 7 TD features were less
than 1%. Thus, the combination of 5 TD features which
10 inputs would be enough to discriminate the stance and

Validation Confusion Matrix

Training Confusion Matrix

15261

Output Class
Output Class

Target Class

Target Class

Test Confusion Matrix

All Confusion Matrix

Qutput Class
Output Class

Target Class

Target Class
(b)

Figure 4: The confusion matrix for Group 6 of () LM and (b) SCG training algorithm
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Table 2: Classification accuracy for each TD feature sets using LM Table 3: Classification accuracy for each TD feature sets using SCG
training algorithm training algorithm

Classification Rate (%) Classification Rate (%)

TD Features TD Features

Training Validation Testing Overall Training Validation Testing Overall

88.1 87.9 87.9 88.1 85.4 85.4 85.4 85.4

88.9 88.9 88.3 88.8 87.1 87.3 87.9 87.3

87.9 88.2 86.9 87.8 87.9 87.5 88.4 87.9

88.5 87.8 87.6 88.2 87.8 87.4 87.7 87.7

C 88.2 87.7 87.9 88.1 C 86.2 86.2 85.9 86.2
88.0 88.4 87.9 88.1 85.7 85.7 86.4 85.8

88.4 87.8 87.8 88.2 85.6 86.1 85.9 85.7

88.1 88.6 88.6 88.2 87.6 87.7 87.0 87.6

88.3 88.3 87.3 88.1 87.8 87.8 87.7 87.8

88.4 88.4 88.0 88.3 85.2 84.5 85.1 85.1

93.8 93.4 93.3 93.7 92.1 92.6 92.2 92.2

94.7 93.8 94.7 94.6 92.6 92.5 92.0 92.5

93.9 94.3 93.6 93.9 92.6 92.5 92.7 92.6

93.9 93.7 94.1 93.9 91.7 91.6 91.8 91.7

GROUP 1 94.0 94.4 93.9 94.0 GROUP 1 92.6 92.2 92.3 92.5
93.4 93.6 93.2 93.4 92.0 91.9 92.4 92.5

94.4 94.0 93.4 94.2 92.6 91.7 91.2 91.8

93.8 94.3 94.4 94.0 92.5 92.5 91.6 92.4

93.8 93.4 94.0 93.8 93.4 93.0 93.5 93.4

95.0 95.0 94.4 94.9 92.9 92.4 92.1 92.7

94.6 94.5 94.3 94.5 92.0 92.1 92.0 92.0

94.2 94.5 93.7 94.2 91.9 91.6 92.1 91.9

91.6 91.3 91.9 91.6 92.8 92.8 92.9 92.9

94.8 94.9 94.7 94.7 91.9 91.6 91.8 91.9

GROUP 4 94.6 94.9 94.1 94.6 GROUP 4 92.8 92.4 92.6 92.7
95.0 94.8 94.4 94.9 92.5 92.6 92.7 92.5

94.6 94.5 94.4 94.6 93.0 93.4 93.0 93.0

94.2 94.2 94.0 94.2 91.8 91.9 92.0 91.8

94.7 94.9 94.1 94.6 92.0 91.5 92.8 92.1

94.5 94.6 93.6 94.4 90.9 90.7 90.6 90.8

92.9 93.3 92.9 93.0 92.3 91.9 92.2 92.2

94.8 94.6 94.6 94.8 92.7 92.7 91.9 92.6

94.2 93.5 93.4 94.0 91.9 92.2 92.5 92.0

94.9 94.7 94.4 94.8 91.3 91.1 91.5 91.3

GROUP 5 94.3 93.9 94.0 94.2 GROUP 5 91.5 91.8 91.5 91.5
94.1 94.2 93.6 94.1 91.6 92.0 91.7 91.7

95.1 94.9 94.3 94.8 92.5 92.5 91.6 92.4

94.6 94.0 94.0 94.4 91.9 92.0 92.1 91.9

94.3 94.4 94.0 94.2 92.0 92.1 91.9 92.0

94.1 93.9 93.9 94.0 92.0 92.4 91.7 92.0

95.5 95.4 95.4 95.5 92.5 92.3 93.1 92.6

94.4 94.0 93.7 94.2 92.1 92.3 92.9 92.3

94.2 93.3 93.9 94.0 92.6 92.7 92.5 92.6

95.8 96.1 95.5 95.8 92.7 91.7 92.9 92.6

GROUP 6 96.1 95.8 95.6 96.0 GROUP 6 92.3 92.2 91.9 92.2
95.0 94.7 94.9 95.0 92.0 92.4 92.2 92.1

94.2 93.8 94.0 94.1 92.2 91.5 91.9 92.1

95.9 95.3 94.6 95.6 92.2 92 91.9 92.0

93.7 93.1 93.5 93.6 92.0 91.8 92.1 92.0

94.5 94.9 94.4 94.6 93.0 93.0 92.6 92.9
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swing phases. In other words, increasing the number of in-
puts more than 10 does not affect the performance of ANN
model. Nevertheless, the training algorithm of ANN model
influenced the classification accuracy as LM training algo-
rithm was approximately more than 2% higher than SCG
training algorithm for all TD features. These results are in
agreement with work done by Ibrahimy et al. for discrimi-
nate the hand movement [16].

96,0 96,0
o & & —
94'0 v v 94,0
92,0 2(2)'8
7Y el SCG
90,0 88,0
88,0 86,0 ==LM
86I0 T T T T T 8410

C GROUP GROUP GROUP GROUP
1 4 5 6

Figure 5: Classification accuracy for all TD features

4 Conclusions

The aim of the current study was to propose a new TD fea-
tures sets in classifying EMG signals during stance and
swing phases. This study has identified multiple TD fea-
tures, RMS, MAV, SD, IEMG, WL, MAX and VAR were sug-
gested than a single TD feature especially MAV. Addition-
ally, the LM training algorithm of ANN was performed bet-
ter than SCG algorithm with at least 10 inputs. This ap-
proach will prove useful in expanding our understanding
of ANN model with different number of inputs. Also, the
findings will be of interest in development of AFO to con-
trol the actuator. Even though ANN has shown its useful-
ness in classifying EMG signals for gait event detection, fur-
ther research might improve the classification accuracy us-
ing other TD features with different multiple feature sets
and explore other classifier such as support vector ma-
chines.
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