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 The main objective of this paper to determine multipath and time-varying 

channel behaviour of short-terrestrial millimetre-wave point-to-point radio 

links. In an attempt to invigorate the impact of rain attenuation on mm-wave 

channel parameters such as the RMS delay spread, path loss received power 

strength and Rician distribution with a K factor. A brief analysis of rain 

fading was presented based on the simultaneous measurement of one-minute 

rain rate and its effects on a short experimental link of 38 GHz. Rain fade 

average is observed as high as 16 dB for 300 m path at about 125 mm/hr rain 

intensity. The statistical spatial channel mode (SSCM) simulation software 

was utilized for an operating frequency of 38 GHz. To generate of power 

delay profile (PDP). For both omnidirectional and directional antenna. The 

RMS delay spread and path loss has been estimated using the environmental 

parameters of Kuala Lumpur city which illustrates the theoretical 

performances of 5G in Malaysia. It is observed that RMS delay spread, path 

loss received power strength and K factor effected dramatically by rain fade. 

(SSCM) simulation software has to be modified to consider rain fade 

dynamic characteristics to achieve ultra-reliability requirements of outdoor 

applications in the tropical regions. This study is important for understanding 

signal propagation phenomena in short distance and enabling the utilization 

of the millimetre wave band for an urban micro-cellular environment for 5G 

communication system. 
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1. INTRODUCTION  

Millimetre wave communication for wideband systems revolutionized the way we live in today‘s 

world. It solves the problem of the limited bandwidth with high demand greater data rate for mobile devices 

[1]. Millimetre wave considered as the extremely high frequency (EHF) with wavelengths ranging from 1 to 

100 mm [2]. It has fundamental access to 10 Gbit/s bandwidth with the highest data rates [3]. Hence it is 

highly recommended for future applications and service such as real-time video streaming and the rise of the 

Internet-of-Things [4]. It can be utilized to provide high throughput in a small geographic area.  

To handling this request, the wireless communication is moving to its (5G) cellular innovation with 

huge amounts of connected devices. 5G systems have promised an ultra-low latency between 1 ms to 10 ms 

which offers rise to the best performance [5]. Due to the extremely small wavelength at mm-wave 

frequencies makes it possible to pack many high gain antennas array on-chip into the mm-wave transceivers. 

CMOS technology can now operate well into the millimetre wave spectrum in a Cost-effective manner [6]. 
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Millimeter Wave communication systems can employ highly directional antenna using beamforming gain to 

improve spectral efficiency and reduce the impact of interference [6]. They are characterized by inherent 

security and privacy because of narrow beam width and limited range. Samsung stated it is 5G system 

effectively achieving 1Gbps in the 28 GHz band, contrasted with 75 Mbps achieved by (4G LTE) [7]. 

However, some challenges faced by wideband communications become clear and must be solved [6], [8], [9]. 

Since each country has different climate parameters, it requires a channel model of 5G developed 

independently to accomplish the best performances. 

Malaysia, characterized by heavy and high rain rates such as a monsoon at a rateof150mm/h with 

large raindrop sizes. The raindrop size distribution changes according to geographical location, and they can 

approach the size of radio mm-waves. Hence, due to their comparable sizes, mm-Wave signals are more 

exposed to blockage by raindrops than signals with longer wavelengths [2]. The mm-wave signals can be 

absorbed, scattered, depolarized, and diffracted by rain. This can restrict their propagation, causing high 

signal attenuation loss through effective propagation path length [2], [10]. The level of rain attenuation 

increases when the rain rate, operating frequency, rain density, or effective length are increased. If the air is 

not clean, the rain attenuation and atmospheric absorption increase the pathloss and limit the communication 

range [11, 12]. As such, high rain attenuation of the mm-wave band in tropical regions stand out as a key 

obstacle facing the implementation of the 5G wireless system. 

In millimetre wave networks, a received signal level and interference dynamically vary due to rain 

attenuation. These physical layer variations have an influence on upper communication layers. Which yields 

to variable network capabilities to serve traffic demands. Since the designer of 5G communication system 

looking for 99.999% availability. The rapid channel variation reduces the reliability, availability, and 

performance of the millimetre wave links [13]. Thus, this paper will examine the impact of rain fade on the 

millimetre wave channel characteristic parameters such as received power strength, power delay profile and, 

RMS delay and, coherence bandwidth, and coherence distance. In order to clarify facilitate implementing 

mm-wave communications for a typical 5G cell size in the tropical region.  

Having a good knowledge of the propagation channel characteristics over mm-wave frequencies is 

considered as a major subject to conduct accurate and reliable 5G communication systems within small cell 

design. This paper presents wide-band (800-MHz RF bandwidth) propagation under rain conditions at 

millimetre-wave frequencies over short terrestrial links region tropical in small outdoor cell systems. It has 

also reported on real measurement data of one-minute rain rate and measured receive signal level 

simultaneously, in 0.3 km experimental link of 38 GHz. A preliminary analysis on Malaysia 5G channels by 

utilizing statistical spatial channel mode SSCM simulation software, for an operating frequency of 38 GHz 

have been presented. The rain impact over the propagation path is analyzed for the average value of rain rate 

from direct measurement input to NYUSIM software simulation. This model developed in the temperate 

region New York University [14]. This study can be considered as a portrayal preliminary simulation in 

Malaysia to investigate the performance of 5G channel during the rainy event. The motivation of this primary 

study is to investigate challenges and future possibilities in mm-wave applications in tropical areas. 

 

 

2. MM WAVE PROPAGATION CHARACTERISTICS 

Millimetre wave propagation characteristics should be considered for the reliable design of 5G 

cellular communications. mm-Wave has a higher path loss hence; the coverage will be restricted [15] which 

make it most appropriate for use in outdoor small cell scenarios and in indoor hotspots [16]. Shadowing 

impacts and various attenuation losses such as dry air, vapour, haze, and rain of the mm-Wave channel 

become more challenging at mm-wave frequencies. Millimetre channel characteristic is illustrated in Figure 1. 

Interference and mobility become more challenge as well as rapid channel fluctuations and intermittent 

connectivity. As attenuation and atmospheric absorption increase, the path loss limits the coverage [11]. There 

is a requirement for new knowledge into design and protocols to overcome some impediment such as path 

loss, higher penetration, precipitation, directivity, foliage losses, sensitivity to blockage. A number of 

researchers [7], [17], [18] identified some of the essential difficulties and major propagation issues from 

utilizing mm-Wave for 5G cellular communications and these include: 
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Figure 1. mm Wave propagation characteristics [19] 

 

 

2.1. Path loss and large-scale fading 

Path loss describes the drop-in effective transmit power of wireless signal through the channel, which 

is determined as [2]: 

 

                
  

  
        (1) 

 

Large-Scale Fading characterizes the average received signal strength over the large T-R propagation 

distance. Path loss could be because of numerous impacts, such as free-space loss, significant diffraction, 

refraction, coupling loss, and absorption [20]. 

 

L(d)=Pt+Gt+Gr-Pr(d)-L0[dB]       (2) 

 

Gt and Gr indicate TX and RX antenna gains respectively in dBi, and Pt and Pr respectively illustrate, 

transmitted power and received power in dBm, and L0 is mm-Wave link loss in dB [21]. 

 

2.2. Small-scale fading 

Small-scale fading is used to characterize the fast variance of the average received signal strength and 

phase over a very short distance or period duration as a consequence will complicate the channel impulse 

response (CIR). There are different models for calculating path loss developed based on experimental data 

designed to fit a certain scenario or environment [14] such as: 

PLCI (f, d) [dB]=FSPL (f,1 m) [dB]+10nlog10 (d) 

 

+AT [dB]+χσ CI, where d ≥ 1 m       (3) 

 

where the carrier frequency represented as f in GHz, the distance is d, and the path loss exponent (PLE) is n, 

the attenuation denoted as AT, χσ CI represents a zero-mean Gaussian random variable for standard deviation 

σ in dB, and the free space path loss is FSPL (f,1 m) in dB at a T-R distance of 1 m.  

 

AT [dB]=α[dB/m] × d[m]         (4) 

 

Where α is the scattering coefficient and the attenuation represents as dB/m for frequency ranging from 1 GHz 

to 100 GHz [14]. 

 

2.3. Blocking 

Millimeter wave links are highly vulnerable to both user and environmental mobility. Since  

mm- wave radios use directional antennas, different obstacles such as high-rise buildings, furniture and human 

the block the (LOS) signal. In [4] the complex indoor situation, it is likely that the blocked Millimeter wave 

communication link cannot be restored no matter how the access point and the mobile user change their 

antenna directions. Most of the connections at 28 GH NLOS, being partly and heavily blocked by high rise 

buildings, foliage, and vehicular activity [14]. 



                ISSN: 2302-9285 

Bulletin of Electr Eng and Inf, Vol. 8, No. 2, June 2019 :  653 – 664 

656 

2.4. Millimeter wave human blockage 

Blockages of millimeter-wave communication attenuation by human greatly affect link performance. 

A model has been presented to investigate the impact of human blockage at 73 GHz link [22]. The research 

found that a person could induce more than 40 dB of loss when standing 0.5 m from the TX antenna or the RX 

antenna, with a signal decay rate of 0.4 dB/ms at walking speeds. Hence, human blockage is a big issue yet to 

be fully modeled. 

 

2.5. Considerations on spatial consistency 

Spatial consistency can impact so many aspects of 5G system evaluations. It should be considered as 

an essential feature in channel modelling rather than an optional one, in the high-frequency channel modelling 

study item [23]. 

 

2.6. Penetration and other losses 

The penetration loss is considering one of the most major challenges in implementing 5G cellular 

communication at mm-wave frequencies. During the communication, signals penetrate through the walls and 

this will produce a very high penetration loss and causes system performance degradation. It is found that the 

penetration loss quality is lower for dry walls and clear glass at 28 GHz link. In contrast, it is high for brick 

and tinted glass with about 28 dB and40 dB for 28 GHz signals [24]. The result of an intensive study at 28 

GHz indicates that the penetration loss is around 26.5 dB for a concrete wall of 40 cm thickness, while it is 

higher than 40 dB at 60 GHz signals for the same concrete wall. The previous study mentioned that 28 GHz is 

more favorable for mobile communications, particularly in Non-Line of Sight (NLOS) environment [25]. 

Doppler effect in wireless communication leads to change in the received signal frequency due to 

motion between transmitter and receiver. Fundamentally line-of-sight (LOS)causes degradation of the link 

performance [19]. 

 

2.7. Link budget of 5G signal 

Link budget of 5G signal consider all effects of mm-wave propagation which, depending on the 

frequency and scenarios of interest represented. In the example below: Received power in dBm=Tx power+Tx 

antenna gain+Rx antenna gain–path loss–rain fade (est. 2dB/200m)-shadowing loss (20 to 30dB)–foliage loss 

(10 to 50dB)–atmosphere absorption–terrain/humility-Fresnel blockage-system margin. Fresnel zone radius 

(R)=17.32 x √(d/4f) (d in km, f in GHz). By examining the above equations, it is obvious that many factors 

can cripple mm-Wave links. The link budget is the most important area of focus for any 5G deployment team. 

 

 

3. RMS DELAY SPREAD 

The Root Mean Square (RMS) delay spread (ꞇRMS) is a parameter that characterizes the propagation 

delays of a channel. This is an important result that has implications on the data rates that can be transmitted 

through these channels. RMS is useful in estimating if the channel will cause inter-symbol interference without 

the use of an equalizer. Generally, given (ꞇ_RMS), it is requiring (ꞇ_RMS/Ts) symbols to be equalized to 

remove the inter-symbol interference effect for symbol rate 1 Ts. Thus, it has to consider the root mean square 

delay spread RMS [26, 27]. It is the most commonly used one for measuring the delay time. BER is dependent 

on the RMS delay spread as well. The cyclic prefix in OFDM system is typically determined by maximum 

excess delay or by the RMS delay spread of the environment. The RMS delay spread can be expressed as: 

 

     √∫
(    )  ( )   

∫  ( )   
 
  

 

 
        (5) 

 

Where is  ( ) the power delay profile of the channel,    is the average delay of the channel. 

 

 

4. THE RICAN K-FACTOR 

The distribution of the short-term received signal envelope after propagating different paths can be 

described by a-Rice distribution [26]. The Rican K-factor specifies the ratio of the strongest multipath power 

Pmax to the sum of powers of the other weaker multipath, as in the equation below: 

 

  
    

          

         (6) 
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Where Ptot is the total received power from all multipath components (e.g. area under the PDP curve). The  

K-factors were computed to determine whether strong multipath components exist in LOS and NLOS 

environments [28, 29]. In LOS environments, this will be the ratio of the power of the first arriving multipath 

component to the sum of powers of all later arriving multipath components. This was suggested by industry 

users. There is a strong relationship between the rain rate and k factor: 

 

                       (7) 

 

Relationship between the Rician factor (dB) and rain rate (mm/h) as (7). (7) shows that the factor is 

proportional (with a negative sign) to rain rate [28]. In this paper, the Ricean K-factor has been calculated for 

every PDP and is an output parameter in the data file for each simulation run to investigate the impact of 

tropical rainfall characteristics in this important parameter in mm-wave channel.  

 

 

5. RAIN-INDUCED FADING 
Millimetre-wave transmission can encounter critical attenuation during heavy rain [30]. At 25 mm/h 

rain rate can introduce attenuation more than 10 dB/km a range of frequencies 60 to 73 GHz. Rain attenuation 

even reaches up to 30 dB/km if the rain rate reaches 100 mm/h in tropical regions [31]. Recent studies in 

outdoor urban-microcell (UMi) propagation at millimetre-wave showed that future cell radii of cellular 

communication will be 200 m [31]. Hence at such short path length, atmospheric and rain attenuations can be 

ignored [12]. However, most of these measurements were implemented in temperate regions. On the other 

hand, in different tropical areas with consistent and heavy rainfall, rain attenuation impact cannot be 

discounted even for this small cell size. It emerges as a key impediment facing the implementation of the next 

generation of smartphones. Thus, extensive research on channel characterization during rainfall is required to 

develop an accurate rain fade prediction for a wide range of mm-Wave frequency bands [12]. Rain rate and 

rain fade based on real measurement data implemented in Malaysia at 38 GHz with 300 m TX to RX 

separation distance at LOS environment have been reported in order to explore the effects on mm-wave bands 

in outdoor activities for 5G systems in tropical regions. The specification of the link illustrated in Table 1 and 

Figure 2. 

 

 

Table 1. Measured link specification 
Frequency Band (GHz) 37.0-39.5 GHz 

Polarization Horizontal 

Maximum Tx Power dBm +15.0 
Receive Threshold (dBm) -79.0 

Tx & Rx Antennas Gain (dBi) 44.9 Size 0.6 m 

Antenna beam width 10⸰ 
Link bath length 300m 

 

 

 
 

Figure 2. The radio link system configuration based on MINI-Link 38 E unit [31] 

 

 

The rain rate and received signal strength data were periodically monitored and logged daily for every 

minute during rainy events, in 24 hours via the data logger for fifteen months from Jan 1999 to Mar 2000. The 

collected data were analyzed with developing MATLAB software code to obtain the average yearly rain 
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attenuation and rain rate [1]. Existing rain fade prediction models are based on path reduction factors 

techniques. This approach used with link typically more than 1.0 km. The path reduction factor is assumed to 

approximately equal to 1 for shorter link lengths (typically less than 1.0 km) because rain rate would be 

uniform along the path [32], [33]. ITU-R 530-17 prediction model [32] has been used to compare measured 

and predicted values of rain fade. Direct original measurement has given an average value of 125 mm/h at 0.01 

% of time rain rate exceeded [1]. 

 

5.1. Rain attenuation measurements at 38 GHz  

The equivalent, path attenuation along LOS a 300m link for horizontally polarized was calculated by 

the difference between the RSL during clear sky conditions and the RSL during rain. That is, 

 

Attenuation=RSLclear sky-RSL rainy       (8) 

 

Moreover, the increase of mm-wave signal attenuation due to rain was measured with reverence to 

free space path loss. In free space, the received signal power Pr via an unobstructed LOS path with no 

multipath components is given by: 

 

  (   )                   
(     )

 
–     (    )    ( ) 

 

Where Pt transmitted power; GT transmitter gains; GR receiver gains   wavelength; Lpath length. (9) and has 

been used to measure attenuation due to rain as well. Moreover, rainfall rate measurements data R has been 

converted into an equivalent value of rain attenuation AR along the path of the 300-m link using the power-law 

approximation: 

 

      

    
    (

  

 
)        (10) 

 

Parameters k and α depend on frequency, rain temperature, and polarization; and their values can be 

obtained from ITU-R P.838-3 [34]. The worst two rainy events, individually, in February have been plotted in 

Figure 3 with measured rain rate data and measured receive signal level for the same period. The results 

presented in Figure 3 indicates that received signal strength has been sharply decreased by around 22dB during 

the heavy rainfall event on 16/02/2000, 6.6 dB/m.  
 

 

 
 

  

Figure 3. Measured rain rate and the corresponding received signal strength on experimental Mini-links at 38 

GHz operating in Malaysia 
 

 

In Table 2, recorded absolute path loss & rain attenuation values at 38 GHz for horizontal 

polarization by link, measurement date, and weather condition. Figure 4 and 5 present the differences between 

signal attenuation on a clear sky and signal attenuation on rainy events. On a clear day, the signal received is 

above the attenuation threshold, -25.5 dB. This weather, the mm-wave link not recorded any outage due to rain 

attenuation. But on the rainy weather the signal received at the receiver is below the attenuation threshold,  

-25.5 dB. This happens due to the interference caused by raindrops and mm-wave signal travelling through the 

atmosphere. When this phenomenon occurs, the transmission is weakened by scattering more than the 

absorption of the signal by raindrops. Hence, the number of multipath components will increase. As a result, 

the 5G systems that operate during this duration will experience an outage due to rain attenuation and difficult 

to achieve ultra reliability requirements of outdoor applications at tropical regions. Thus, the use of suitable 

beamforming access techniques will be needed to maintain the ultra-reliable system operation. 
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Figure 4. Received Signal level time series during  

rain events 

Figure 5. Received Signal level time series during 

clear-sky 

 

 

Table 2. Absolute path loss & rain attenuation values at 38 GHz. 23/2/2000 from 17:8 to 17:23pm 

LOS Rain Attenuation Measurements at 38 GHz (Horizontal Polarization) 
and (300 meter LOS Millimeter wave-Link 

Rain rate mm/h Path loss in dB Rain attenuation in dB 

30 104.08 6.72 

30 105.42 8.06 
30 104.90 7.545 

30 105.88 8.52 

60 107.15 9.79 
60 108.63 11.27 

60 108.87 11.51 

60 110.21 12.85 
90 111.55 14.20 

120 108.33 10.97 

90 112.90 15.54 
120 112.18 14.71 

120 115.59 18.23 

150 114.05 16.68 
90 108.17 10.81 

 

 

The path loss rain rate and rain fade values, shown in Table 2, illustrate a clear trend. At lower rain 

rates, total path signal attenuation experienced by the propagating millimetre wave is comparatively small. 

With an increase in rain rate, the dropping level in received signal strength (RSS) increases linearly. It's 

observed that the received signal fluctuations increase rapidly during rainy events. The path loss exponent is 

an experimental constant that is often measured, however, can as well be derived theoretically in some 

environments. From the data measured results, it was 3.28 during rain and proximity 2 at clear sky weather. It 

differs depending on the millimetre wave signal propagation environment and describes, the rate at which path 

loss rises with Tx to RX separation distance for a given propagation environment. 

 

5.2. Comparison with rain models 

In this section, the rain attenuation values, calculated from data files, are compared with rain models 

described in Section 5.1. For a given short path between the transmitting and receiving antennas, compares the 

rain attenuation values in Table 2, measured for horizontal polarization configuration, with corresponding 

values predicted by the ITU-R 530-2017 attenuation model for different rain rates. the measured and predicted 

attenuation is compared at0.1 % %, 0.01 % and 0.001of the time, as follows. The average value of measured 

rain fade is 4.71 dB, 10.84 dB and 16.25 dB, whereas the ITU-R predicted values are 3.8 dB, 8.5 dB and 11.6 

dB, respectively. It's clear that ITU-R model underestimates rain attenuation in the tropical climate [35-39]. 

Thus, more accurate prediction models for short mm-wave terrestrial ink are needed. A preliminary analysis of 

Malaysia 5G channels by utilizing statistical spatial channel mode SSCM simulation software, for an operating 

frequency of 38 GHz have been presented. The rain impact over the propagation path is analyzed for the 

average value of rain rate from direct measurement input to NYUSIM software simulation [1]. This model 

developed in the temperate region of New York University. It‘s found that NYUSIM main code considers Law 

and Parsons Rainfall DSD Model.  

The Laws and Parsons model has been shown to be more suitable for temperate regions and not an 

accurate model for rainfall DSD estimation for regions outside Europe and North America. As well as in 3GPP 

channel model have used ITU-R model. Thus, it considers not accurate to investigate the performance of 5G 
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channel during the rainy event in the tropical climate. Since the designer of 5G communication system looking 

for 99.999% availability [1]. According to the above results, it is recommended to propose and develop an 

efficient prediction model to investigate the worst-case scenarios that will be more accurate for cellular 

communications services in tropical regions. Rapid channel fluctuations and intermittent connectivity 

considered one of the key challenges in understanding the implementation of cellular communications in the 

mm-wave band [3]. It is obvious to say that during the rain event the fluctuation of amplitude and phase on 

mm-wave signal have been increased. This will impact the dynamic channel impulse response. As well as al 

small-scale parameters of the channel expected to change at heavy rain events. This physical layer fluctuation 

produces an impact on upper layers of the communication system, which leads to variable system capacities 

and instability to serve data rate request [5]. Therefore, in design mm-wave communication systems at 38 

GHz, the analysis of the statistical and dynamic behaviour of rain fading must be investigated thoroughly. 

 

5.3. Millimeter wave terrestrial link availability 
Availability, which refers to the system constancy against possible outage scenarios. It's defined as 

the probability that a given service is available (i.e., coverage). Which denote the presence or absence of link 

reliability. Hence, availability reflected the link reliability. It is affected by path loss, shadowing, rain fade, and 

other large-scale parameters of the channel. Availability of a service is a geographic characteristic, which 

varies from place to place, and potentially on long time scales, e.g., related to hardware failures [5]. According 

to the average measured rain fade at 38 GHz around 16 dB, the probability that the attenuation of the channel 

is wares than 16dB calculated was 0.02455. In Termes of rain fade, the availability of millimetre-wave link 

depends on the probability of occurrence of heavy rain to cause an outage. The percentage availability of  

mm-wave link is tied to the rainfall characteristic of the location where the link is deployed, as well as the path 

length. In this case, the availability can be presented as: 

 

Availability=100%-outage        (11) 

 

 

6. ANALYSIS IN MALAYSIAN TROPICAL CLIMATE STATISTICAL CHANNEL MODELS 

In this paper, we considered Kuala Lumpur city climate parameters, which is in the tropical region 

with high rain rate, large raindrop sizes and strong thunderstorms over the year. Considering a bandwidth of 

800 MHz with a carrier frequency of 38 GHz for 5G in outdoor, we investigate the performance of the channel 

in an urban microcell (UMi). The signal propagation, both LOS were conditioned at 300m T-R separation 

distance. The directional and omnidirectional receiver (RX) antennas were utilized [1]. The average value of 

rain rate, humidity, temperature, and barometric pressure as climate parameters obtained from real 

measurements are shown in Table 3 as input to NYUSIM software simulation [14]. Where delay profile PDP 

was generated to estimate the number of multipath components above the noise threshold, the power of the 

LOS component, the absolute propagation time, path loss due to atmospheric attenuation and multipath 

scattering, path loss exponent and RMS delay spread. Statistical results are outlined in the next sections. 
 

 

Table 3. Input channel parameter to the NYUSIM of Kuala Lumpur City represent of 5G Malaysia 
Input Channel Parameters Value(s) 

Frequency 38 GHz 
Channel bandwidth 800 MHz 

Condition UMi 

Environment LOS 
TX-RX separation distance 300m 

TX Power 15 dBm 

Barometric Air Pressure 1010.00 mbar 
Humidity 85% 

Average Temperature 28◦C 

Average Rain Rate 125mm/hr 

Foliage Loss 0.4dB 

 

 

Generated PDP‘s are classified by links Tx to Rx separation distance, and weather condition 

summarized in Table 3. A comparison of the PDP‘s under various weather conditions is given in Figures 6, 7, 

8, 9. Xu et al showed that multipath could occur at the edges of very intense and compact rain cells. Pressure, 

temperature, and rain could change the refractivity of the atmosphere, thus creating fluctuating propagation 

paths and propagation delays. It's observed that rms delay was higher in case of omnidirectional transmission, 

while it was lower at the directional antenna. Results show that, with considering rain, the RMS delay spread 

can be as high as 21.9 ns on the omnidirectional antenna LOS path, and 6.5 ns on the directional antenna. The 
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difference in rms delay was 4ns and 3.6 ns between clear sky and rain in omnidirectional and directional 

antenna respectively. The scattered power and the delay spread are larger for omnidirectional antennas. It's 

worthy to mention that directional antennas boost the received power and coherence bandwidth (BC). This is 

because when directional antennas are used, most of the reflectors and scatterers will fall outside the antennas 

beam width [3]. It is inversely proportional with τ_RMS [Bc α1/ τ_RMS] BC parameter represents delay 

spread in the frequency domain. which quantizes the frequency differences of the wireless channel.  

The minimum received power of each multipath component) determined by the transmit power, 

dynamic range (DR) of simulation system (190 dB) and a 10 dB SNR, dynamic range maximum possible 

omnidirectional path loss in dB, according to T-R separation distance. If T-R separation distance is no larger 

than 500 m, then set dynamic range as 180 dB, otherwise set it to 220 dB threshold Th equals the transmit 

power in logarithmic scale minus 180 dB [14].  

 

Th=TX Power–DR        (12) 

 

The Ricean K-factor has been calculated for every PDP and is an output parameter in the data file for 

each simulation run. It was -5.568 in case of rain condition while it recorded -2.076 at clear sky weather. 

Ricean K-factor decreases with increasing rain rate due to increase power of the reflected multipath 

components [26]. The result showed a decrease in the LOS power as the multipath power increases during 

rain. (7), combined with the received total power estimate, provides a powerful tool to model received signal 

variation and the resultant outage probability for mm-wave systems 

Data files created from NYUSIM can be utilized to simulate CIRs for mm-Wave systems. The 

omnidirectional path loss is found lower than directional path loss in scenarios LOS .It was close to measured 

values than directional antenna scenario. However real measurement of shadow fading and path loss exponent 

are also needed. It is found that received power decreased by 6.4 dB in Malaysia link compared with a link at 

temperate region because of path loss was higher at 38 GHz when taking rain fade into consideration. It is 

observed that the path loss difference because of other weather parameters (humidity, temperature, and 

barometric pressure) only influence the link by increasing path loss by 0.1 dB. 
 

 

  
  

Figure 6. Directional LOS-PDP with at clear sky Figure 7. Directional LOS-PDP R=125 mm/h 
 

 

  
  

Figure 8. Omnidirectional LOS-PDP at R=0 mm/h  Figure 9. Omnidirectional LOS-PDP at R=125 mm/h 
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7. CONCLUSION 

Millimetre wave communication provides high capacity and data speed. In this paper, an overview of 

the challenges faced by mm-wave that support wideband communications is provided. Major propagation 

issues from utilizing mm-Wave for 5G cellular communications include path loss, penetration loss, rain fade, 

blockage, doppler, and multipath. Human blockage is found a big issue yet to be fully understood and 

modelled. Furthermore, spatial consistency also remains to be investigated and modelled. The main limits of 

the existing channel models are lack of measurements on bandwidth, spatial characteristics for dual mobility, 

directional antennas and large-scale antennas for massive MIMO. The main purpose of this paper was to study 

the impacts of various weather events such as rain on the behaviour of the broadband millimetre-wave channel 

in tropical area. Averaged attenuation in a Malaysia was measured to be 16 dB over the 300 m path. These 

allow the designer to define the additional fade margin needed for ultra-reliable operation of broadband 

communication systems at millimetre-wave frequencies. The preliminary result of Malaysian 5G channels by 

utilizing statistical spatial channel mode SSCM simulation software for an operating frequency of 38 GHz 

have been presented. The average value of rain rate, humidity, temperature, and barometric pressure as climate 

parameters obtained from real measurements in Kuala Lumpur are used as input to NYUSIM software 

simulation. Multipath statistics shows that while very few multipath components were detected in clear, dry 

weather, more multipath components were detected during rain. that cussed variation in small scale channel 

parameters such as RMS delay spread, path loss, path loss exponent and k factor. It is also found that received 

power decreased by 6.4 dB on the link in Malaysia compared with a link at temperate region because of path 

loss was higher at 38 GHz when taking rain fade into consideration. It is observed that RMS delay spread 

effected dramatically by rain fade. This study shows that further investigation is required to model 5G 

channels in tropical areas. 
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