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 The modeling of membrane filtration processes is a challenging task because 

it involves many interactions from both biological and physical operational 

behavior. Membrane fouling behaviour in filtration processes is complex and 

hard to understand, and to derive a robust model is almost not possible. 

Therefore, it is the aim of this paper to study the potential of time series 

neural network based dynamic model for a submerged membrane filtration 

process. The developed model that represent the dynamic behavior of 

filtration process is later used in control design of the membrane filtration 

processes. In order to obtain the dynamic behaviour of permeate flux and 

transmembrane pressure (TMP), a random step was applied to the suction 

pump. A recurrent neural network (RNN) structure was employed to perform 

as the dynamic models of a filtration process, based on nonlinear auto-

regressive with exogenous input (NARX) model structure. These models are 

compared with the linear auto-regressive with exogenous input (ARX) 

model. The performance of the models were evaluated in terms of %R2, 

mean square error (MSE,) and a mean absolute deviation (MAD). For 

filtration control performance, a proportional integral derivative (PID) 

controller was implemented. The results showed that the RNN-NARX 

structure able to model the dynamic behavior of the filtration process under 

normal conditions in short range of the filtration process. The developed 

model can also be a reliable assistant for two different control strategies 

development in filtration processes. 
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1. INTRODUCTION 

A membrane bioreactor (MBR) is well-known as the best alternative to the conventional activated 

sludge (CAS) system for wastewater treatment. The application of an MBR has seen its rapid development 

globally in providing a better treatment of influent, either from industrial or domestic wastewater. The most 

significant part in any MBR system is the membrane filtration technology from which MBR has benefitted 

tremendously. A membrane filtration system, however, can still stumble upon various issues such as fouling 

and energy efficiency [1-4]. The factors that govern fouling in membrane filtration system are many and 

varied. Of such factors are accumulated from colloidal, particulate, solute material, microorganisms, 

membrane material, cell debris and etc [5-6]. Fouling can lead to a membrane clogging, resulting in that the 

membrane pore will be blocked by solid material. When this phenomenon occurs, the transmembrane 

https://creativecommons.org/licenses/by-sa/4.0/
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pressure (TMP) rises or the permeate flux declines. As a result, uncontrollable pressure rises and the 

permeate flux declines, which will lead to membrane damage.  

Currently, various physical cleaning techniques are performed globally in many pilot and full scale 

membrane filtration processes. From an operational point of view, fouling can be minimized by using 

techniques such as air bubble (aeration) control, relaxation, backwashing, and chemical cleaning [5-7]. 

Another way to reduce fouling is by running below critical flux condition [8-9]. By a proper control and good 

operating conditions to ensure stability and optimal flux of the filtration process, membrane and scaling can 

also be minimized [10-11]. 

Mathematical model of membrane filtration process plays an important role in the understanding of 

membrane fouling. The model can be utilized in the development of control system design and optimization 

[12-13]. In the literature, several form of mathematical models have been proposed in order to understand 

fouling mechanisms in the filtration systems [14-18]. Some models were derived to predict the behavior of a 

membrane filtration process. For example, [19] applied the Darcy and Stoke laws to model a submerged 

hollow fiber MBR system. TMP model was developed using Stoke law, while the Darcy provided series of 

resistance in order to model fouling for hollow fiber membrane filtration systems. Several modifications of 

Darcy’s law have been performed by many researchers to further improve the filtration model. 

Artificial neural network (ANN) is one of the most promising techniques in modelling of MBR 

filtration process [20-22]. One in particular, [23] developed two MBR models using semi-empirical model 

and ANN based model for permeate flux modeling within a submerged capillary MBR. Another modeling of 

submerged membrane bioreactor (SMBR) using an ANN model was demonstrated by [24] for a flat sheet 

membrane filtration application of wastewater treatment. This model represented a backwash effect for 

permeate flux. In [25] developed ANN models for the effluent quality of SMBR that treating cheese whey 

wastewater.  

Most of the ANN models developed for SMBR filtration process are not suitable for control 

applications. MBR filtration requires more simpler and reliable models to be utilized in the controller 

development. In [26] proposed time series system identification modeling technique using two inputs and one 

output of the membrane filtration parameter. The filtration models are developed using linear autoregressive 

with exogenous input (ARX), ARMAX, subspace and state space techniques. The data are obtained from the 

flux stepping experiment. The results showed that only the subspace has the potential to model the filtration 

process with multiple input one output (MISO) system. The important of time series modeling also presented 

by [27] where the time series analysis can reveal the characteristic of the phenomenon as well as the future 

prediction of the membrane filtration process. The authors successfully developed the time series ANN 

model for short term forecasting cross-flow membrane filtration process. However, the non-linear time series 

modeling for the SMBR filtration process have not yet been established. Due to the complexity of membrane 

fouling behaviour, this non-linear series of model is of priority to discover to enhance the understanding of 

the dynamic behavior of membrane filtration process. 

Therefore, this paper focuses on the development of SMBR filtration process using ANN-ARX time 

series modelling technique which known as nonlinear NARX model. The models are then compared with the 

linear ARX filtration models, which later used in the designing of control strategies for the membrane 

filtration system. The proportional integral derivative (PID) control is designed to control the flux to ensure 

that operation of the process is as simple as possible for industrial membrane bioreactor. Two single input 

single output (SISO) PID controllers were developed for two control strategies. The first strategy aims for 

permeate flux control while observing the TMP behaviour. The second strategy is where TMP is controlled 

and the while permeate flux is observed. Both simulation and real experimental tests have been performed for 

these control strategies. 

 

 

2. EXPERIMENT SETUP 

The experiments were carried out in a single tank aerobic submerged membrane bioreactor, with a 

working volume of 20 L palm oil mill effluent (POME) supplied by Sedenak Palm Oil Mill Sdn. Bhd. in 

Johor, Malaysia. The working temperature for the bioreactor was 28 ± 1 °C. The plant was operated with a 

120 second permeate and a 30 second relaxation period. The airflow rate was maintained around 5-7 SLPM 

with a DO level of more than 2 PPM. Figure 1 shows the pilot plant setup for the experiment. The sequential 

operation of the plant was controlled and monitored by using National Instruments LabVIEW 2009 software 

with an NI USB 6009 interfacing hardware. 

 



Int J Artif Intell ISSN: 2252-8938  

 

Modeling of submerged membrane filtration processes using recurrent artificial… (Zakariah Yusof) 

157 

 
Tag No Description 

C-101 20L 2HP Air Compressor 

PV-101 Proportional Valve 

FA-101 Airflow Sensor 

PI-101 Pressure Transducer 

SV-101 Solenoid Valve Permeate Stream 
 

Tag No Description 

SV-102 Solenoid Valve Backwash Stream 

P-101 Peristaltic Pump 

P-102 Diaphragm Pump 

FM-101 Liquid Flow Meter 

Membrane Hollow Fiber Membrane 
 

 

Figure 1. Schematic Diagram of SMBR 

 

 

In this work, a Polyethersulfone (PES) material with an approximate 80-100kda pore size and with 

an effective membrane surface area of about 0.35 m2 was used in the filtration system. In Figure 2, the graph 

from the experiment data is shown. This data is divided into two sets of data which are 50% for training and 

another 50% for testing data set.  

 

 

 
 

Figure 2. Experimental data 

 
 

2.1.   NARX Modeling 

 Nonlinear autoregressive with exogenous input (NARX) developed using past input-output data are 

employed to predict the current output. This time series prediction method is given as a general equation of 

NARX as below (1). 
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Where 𝑖 = 1,2, … 𝑛𝑎 , 𝑦̂𝑖(𝑡), 𝑦1(𝑡 − 𝑛𝑦1
𝑖 ) and 𝑢1(𝑡 − 𝑛𝑢1

𝑖 ) is the predicted output and are the past input and 

the past output lags, respectively, 𝑛𝑎 is the number of the output and 𝑛𝑏 is the number of the input, 𝑒(𝑡) is 

the residual and 𝑓 represents the nonlinear function of the structure. In this paper, the nonlinear function of 

the algorithm is estimated using the feed-forward neural network (FFNN) with a recurrent structure. Unlike 
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the NARX model, linear ARX is approximate using the linear regression method with the basic equation of 

the model is given in (2). 
 

)()()( tetty T    (2) 

 

Where, 
 

))()...1()()...1(()( u
TT

y
TTT ntutuntytyt   (3) 

 

𝑦(𝑡) and 𝑢(𝑡) is the output and input of the system, respectively. 𝑛𝑦 𝑎nd 𝑛𝑢 are of respectively the output 

and input lags used in the modeling. The adjustable parameters in the (2) is defined as: 
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The 𝜃 is estimated by minimizing the lost function given by (5). 
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Figure 3 shows the structure used to develop the neural network based NARX model.  𝑦1(𝑡) is the flux, 𝑦2(𝑡) 

is the TMP output from the model and 𝑢1(𝑡) is the permeate pump control voltage. 
 

 

 
 

Figure 3. Neural network NARX model structure 

 

 

The FFNN model is represented by (6) as shown follows:  
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In this work, a Lavenberg Marquardt (LM) back propagation algorithm (BP) was utilized to train the 

network with six hidden neurons. The performance of the permeate flux prediction for all of the methods was 

based on three criteria which are the correlation coefficient (R2), the mean square error (MSE), and the mean 

absolute deviation (MAD). The equations of the MSE and the MAD are given in (7) and (8), respectively. 
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Where 𝑦̂𝑖 is the predicted value and 𝑦𝑖  is the actual value from the measurement data and 𝑁 is the number of 

the data point. 



Int J Artif Intell ISSN: 2252-8938  

 

Modeling of submerged membrane filtration processes using recurrent artificial… (Zakariah Yusof) 

159 

N

xx
MAD

ii 
  (8) 

 

Where 𝑥𝑖 is the predicted value and 𝑥̅𝑖 is the mean of the predicted value. 

 

 

3. RESULTS AND DISCUSSION 

Figures 4 to 7 present the TMP and flux modelling results. As can be seen from figures, the results 

obtained with the proposed NARX are significantly better than those obtained with the linear ARX models 

(both for training and testing). The performance evaluation for TMP model training shown in Figure 4 

indicates more than 98% for R2, with MSE and MAD values of 0.0011 and 0.0248, respectively. This 

performance is much better compared with the linear ARX model (%R2 at 68.86, MSE at 0.0144 and MAD 

0.0508). For flux training model as shown in Figure 5, the R2, MSE and MAD give 97.3%, 0.0049, and 

0.0338, respectively, while the linear ARX model gives 68.42 for %R2, 0.0082 and 0.0510 for MSE and 

MAD, respectively. 

 

 

 
 

Figure 4. TMP model training result  

 
 

Figure 5. Flux training result 

 

 

The testing models as shown in Figures 6 and Figure 7 indicate similar trend of performance as 

given by training models. The TMP showed more than 98% of R2, 0.0012 of the MSE, and 0.0261 of the 

MAD. Linear ARX model showed 72.88% of R2 with the MSE and MAD at 0.0135 and 0.0504, respectively. 

For permeate flux, NARX model yields a good performance with %R2 of 95.7, MSE at 0.005 and MAD  

at 0.0348. Meanwhile linear ARX testing model indicated the %R2 of 66.077, MSE with 0.0093 and  

MAD at 0.0597. 

 

 

 
 

Figure 6. TMP model testing result 

 
 

Figure 7. Flux testing result 
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Tables 1 and 2 summarize the performance of training and testing models for TMP and flux, respectively 

 

 

Table 1. TMP modeling of performance Table 2. Flux Modeling of Performance 
 Training Testing 

 NARX ARX NARX ARX 
%R2 98.8779 64.86 98.4648 72.88 

MSE 0.0011 0.0144 0.0012 0.0135 

MAD 0.0248 0.0508 0.0261 0.0504 
 

 Training Testing 

 NARX ARX NARX ARX 
%R2 97.3 68.42 95.7 66.077 

MSE 0.0049 0.0082 0.0050 0.0093 

MAD 0.0338 0.0510 0.0348 0.0597 
 

 

 

For control strategy, using the models obtained in the previous section, a PID controller was 

considered to control the permeate flux at desired set point. The results of the implementation of this 

controller, both for simulation and from the real experimental setup are presented. Using PID controller, the 

filtration can be performed without any significant decline in flux shown in Figure 8. However, TMP shows 

slightly increment from cycle to cycle, which indicates the occuring of fouling phenomena in membrane 

filtration process. With the assistance of this model, further action such as scheduling of the back wash 

cleaning can be performed accordingly by operators. The simulation results in Figure 8 and Figure 9 were 

verified with the real time experiment, both for flux and TMP control strategies. For flux (real time control), 

it can be seen that shown in Figure 10, the flux can track the setpoint well till the end of the cycle using PID 

controller. The TMP is however indicated small increment shown in Figure 11, although this is slightly lower 

than the increment presented in the simulation result (approximately by 20 mbar).  

 

 

 
 

Figure 8. PID flux control (by simulation) 

 
 

Figure 9. TMP effect (by simulation) 

 

 

 
 

Figure 10. PID flux control (real time) 

 
 

Figure 11. TMP effect of PID controller (real time) 

 

 

As shown in Figure 12, PID was able to control the TMP at a desired set point. In this control strategy, 

fouling caused the flux to decline as the filtration cycle increased shown in Figure 13. These phenomena are 

as expected, however through control design strategies, fouling can be properly delayed and minimized.  
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Figure 12. PID TMP control (by simulation) 

 
 

Figure 13. Flux effect for the TMP control  

(by simulation) 
 

 

Similar trends of flux performance were observed on real time experiment which indicates some 

fluctuations in the flux in order to control the TMP at the desired set point, as shown in Figure 14. Also, the 

last four cycles in Figure 14 illustrates rapid decrement of permeate flux compared with the actual. These 

may caused by an external disturbance during the experiment or unmeasured variables during the modeling 

procedures. Figure 15 shows the effect of the TMP control to the permeate flux as observed in the 

experiment. In general, the range of values for permeate flux are still acceptable and within the actual and 

real time experiments.  

 

 

 
 

Figure 14. PID for the TMP control (real time) 

 
 

Figure 15. Effect of the TMP control to flux  

(real time) 
 
 

From both control (flux and TMP control strategies), it was found that the flux control of the 

membrane filtration is preferable to TMP control. This is due to the flux declination in TMP control was 

faster than that the TMP rises in permeate flux control. The cleaning process can be a further process to 

maintain efficient filtration at an appropriate TMP value.  

 

 

4. CONCLUSION  

In this paper, the comparison between two time series modeling that are linear ARX and the NARX 

modeling techniques for the control strategies of a membrane filtration process was realized. The developed 

models are to be used for process below a critical flux condition. The training and testing results have proven 

the NARX model is preferable to linear ARX model in terms of an accuracy that measured using MSE, MAD 

and R2 criteria. The structure of the NARX model implemented in this paper allows the simulation to be done 

without the need to retrain the model. The developed models can be used to facilitate plant operators for the 

designing of membrane filtration control systems. In this work, a basic PID controller was applied to 

demonstrate the application of the models in control system development. Two strategies were implemented; 

(1) a permeate flux control and (2) a TMP control. The first (1) strategy able to control the flux at a desired 

set point, although with the increment in the TMP due to fouling development. A similar result was found in 

the second (2) strategy, whereby the controller was able to maintain the TMP, while the flux itself was 
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observed to decline. These two strategies were also verified in a real time experiment with the aerobic 

SMBR. The results showed a similar trend with one by simulation. The different was only in magnitude of 

the outputs (either flux or TMP). From the two strategies considered in this work, it can be seen that the first 

strategy is preferable to the second strategy for this type of filtration system. This is due to the tradeoff 

between the flux declination in TMP control and the increment of the TMP in flux control. Finally, the future 

works of this study will utilize the model for a neural network based model predictive control development in 

controlling the SMBR filtration process. 
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