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Abstract.  Shear wave velocity (Vs) is considered a key soil parameter in the field of earthquake 

engineering. The time-averaged shear wave velocity in the upper 30 m (Vs30) layer of soil is used 

to classify seismic site class. In-situ Vs test is sometimes unsuitable to the project’s need due to 

financial reasons, noisy environment on site or simply the lack of expertise. This paper attempts 

to develop a global prediction model for Vs using Standard Penetration Resistance (Nspt), depth 

(z) and soil type (st) as the independent parameters. Two approaches to modelling would be taken; 

a multi-linear regression (MLR) model and an ensemble (EN-PSO) model. The EN-PSO model 

attempts to improve upon the accuracy of the MLR model prediction ability using the ensemble 

learning method. A dataset was compiled from literatures for this paper. 5 Base models were 
developed: MLR, Random Forest (RFR), Support Vector Machine (SVR), Artificial Neural 

Network (ANN) and k-Nearest Neighbor (KNN) which are combined into an ensemble model 

named EN-PSO. The weights for EN-SPO was then calculated using Particle Swarm 

Optimization (PSO). The performance of each models were then compared and it was shown 

that EN-PSO was the best in terms of: MAE (Mean Absolute Error) = 22.085, MAPE (Mean 

Absolute Percentage Error) = 9.1 %, RMSE (Root Mean Square Error) = 31.741 and R2 

Coefficient of Determination) = 0.895. In addition, it was also shown that the EN-PSO model 

was able to improve upon the performance of the MLR model, which the most accurate among 

the Base models. Comparisons were also made between EN-PSO and other suggested Universal 

Vs correlations and EN-PSO was shown to outperform the other correlation based on prediction 

using a modified Test set. Three new empirical correlations as alternative for the EN-PSO model 

was also presented. 

1.  Introduction 
Shear wave velocity (Vs) is considered a key soil parameter in the field of earthquake engineering. The 

time-averaged shear wave velocity in the upper 30 m (Vs30) layer of soil is used by various building 

codes and design standards to classify seismic site class, as recommended by the National Earthquake 

Hazards Reduction Program (NEHRP) provisions [1]. Although directly performing in-situ Vs test up 

to the depth of 30 m is the most robust way to calculate Vs30, it is oftentimes unsuitable to the project’s 

need due to financial reasons, noisy environment on site or simply the lack of expertise. The most 

common alternative to estimate Vs30 is through Vs correlation with other soil parameters. 
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 Previous researchers have tried to establish these correlations based on parameters such as soil 

penetration resistance (Nspt), depth (z), type of soil (st), geological age and overburden pressure. Out of 

these, Nspt consistently exhibits the strongest correlation with Vs. As a consequence, Vs-Nspt correlations 

can be found abundantly in the literature, usually presented in the form of Vs = aNspt
b

, where a and b are 

site-dependent coefficients. These types of correlations are popular due to the fact that Nspt are widely 

used for soil investigation therefore Nspt data can be easily obtained for most sites. However, most of 

these studies are done on a regional basis and only a few [2] [3] have tried to develop a global model 

for estimation of Vs30. 

This paper attempts to develop a global prediction model for Vs using Nspt, z and st as the independent 

parameters. Two approaches to modelling would be taken; a multi-linear regression (MLR) model and 

an Ensemble-Particle Swarm Optimization (EN-PSO) model. The EN-PSO model is an attempt to 

improve upon the accuracy of the MLR model prediction ability by utilizing the ensemble learning 

method. However, unlike the MLR approach, it will not yield an empirical equation due to the “black-

box” nature of machine learning (ML) algorithm used as the base model for EN-PSO.  

This paper would also compare the performance of these 2 models (MLR and EN-PSO) with global 

correlation models suggested by previous researchers [2] [3]. In order to fairly evaluate the performance 

of each of these models, a randomly picked subset of the Vs dataset would be kept away (not utilized in 

training or model development) as the Test set.  

1.1.  NEHRP Seismic Site Class 

 
Figure 1. NEHRP seismic site classification [1]. 

 

Figure 1 shows the site classes based on the value of Vs30. There are a total of 6 classes: Class A, Class 
B, Class C, Class D, Class E and Class F. The lower ranges of Vs30 are much more susceptible to ground 

motion when an earthquake occurs. Therefore, this site classification is essential for an engineer in order 

to determine the appropriate earthquake design’s safety factor. Vs30 is calculated using equation (1). 

𝑉𝑠30 =  
∑ 𝑑𝑖

𝑛
𝑖=1

∑
𝑑𝑖
𝑣𝑠𝑖

𝑛
𝑖=1

                                                                          (1) 

where di is the thickness of layer i and Vsi is the shear velocity in layer i. 

1.2. Ensemble Learning 

Ensemble learning refers to a set of procedures used to combine the output of multiple base models that 
would theoretically perform better than any single base models that constitutes the ensemble [4]. The 

essence of the method is that by combining the output of multiple model, the error of each base models 

are averaged out. Various empirical studies have shown ensemble models are oftentimes better in 

accuracy compared to its individual base models [5] [6] [7]. A few common types of ensemble method 
are bagging, boosting, averaging and stacking.  
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1.3. Particle Swarm Optimization 

Particle swarm optimization (PSO) is a metaheuristic that can be used to find solutions to optimization 

problems through the process of stochastic optimization. PSO was presented with the original purpose 
of simulating social behaviors of organism’s group such as a swarm of bees [8]. Compared to other 

classic optimization method such as gradient descent and quasi-newton methods, PSO does not use 

gradients, therefore can be applied to problems which are not differntiable. A summary of PSO 
applications in engineering problems was reported by Tomasetti & Cagnina [9]. 

1.4. Suggested Universal Correlation 

In order to validate the performance of the models developed in this study, four Vs-Nspt models by 
previous researchers were used as benchmark models. These correlations are selected as the benchmark 

due to the fact that it is specifically developed for estimating Vs regardless of region. Table 1 show the 

summary of the correlations. 

Table 1. Summary of the correlations used as benchmark models. 

Source [3] [4] 

Model 

Name 
AM-ALL AM-SN-CL AR-ALL AR-SN-CL 

Soil Type All soil type Cohesive Cohesionless All soil type Sand Clay 

Vs 77.13Nspt
0.377 75.05Nspt

0.388 91.87Nspt
0.388 75.478Nspt

0.3799 79.217Nspt
0.3699 99.708Nspt

0.3358 

 

2.  Methodology 

 

2.1.  Research Work Flow 

Figure 2 shows the work flow for this research. The first phase consists of conducting an extensive 

literature review with the purpose of compiling suggested universal correlation and compiling data from 

published research paper. The suggested universal correlations chosen as the benchmark for this research 

were shown in Table 1 and were taken from two different papers [3] [4]. Each of those papers presented 

three different correlations categorized based on the soil type: all soil types, sand and clay.  

These correlations were chosen specifically because they were developed for the purpose of 

estimating Vs regardless of region in comparison with most other correlations which were developed for 

a specific region. Meanwhile, the process of extracting and compiling data from published papers are 

described in section 2.2 and the list of papers can be referenced in Table 2. These data were then 

combined as the main dataset used for the purpose of training and testing the ML models. 

After the main dataset is compiled, it was then split into three parts: Train set, Validation set and Test 

set. The Train set was used to train the base models, meanwhile the validation set was used for the 

purpose of evaluating the cost function of PSO during the process of optimizing the weights for equation 

(2). Finally, the Test set was used to calculate the performance metrics (Coefficient of Determination, 

Mean Absolute Error, Mean Absolute Percentage Error and Root Mean Square Error) for the purpose 

of comparison the performances of all the models and the benchmark correlations. 
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Figure 2. Research work flow 

2.2.  Compiled Dataset for Training and Testing 

The dataset used to develop the models presented in this paper are compiled from various paper as 
shown in Table 2. It should be noted that some of the Vs profile from these papers are not included in 

the dataset due to not having enough parameters of interest. Each Vs measurement that was included in 

the dataset include information on Vs, Nspt, z and st. The varied region of sources ensured that the 
developed models are not region dependent.  
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Table 2. Vs measurement sources for each region 

Sources No. of measurements  Region 

Tran & Hiltunen (2008) [10] 48 United States of America 

Dikmen (2009) [11] 12 Turkey 
Prakoso (2011) [12] 38 Indonesia 

Tsiambaos & Sabatakakis (2011) [13] 28 Greece 

Gautam (2016) [14] 98 Nepal 

 
Meanwhile, Figure 3 shows the histograms of the parameters included in the dataset. Most of the Vs 

measurements are in the range of 176-273 m/s with a total of 105 measurements as shown in Figure 

3(a). The mean (μ) of the Vs range is 237.898 m/s with a standard deviation (σ) of 108.5. Figure 3(b) 
shows that an overwhelming majority of the Nspt measurements are in the range of 1-13 blows per 300 

mm, which make sense considering that most of the shallow Nspt measurements are in this range while 

deep Nspt measurements are scattered inconsistently depending on the site. The μ of the Nspt 

measurements is 20 blows per 300 mm, meanwhile the σ is 19.4. Meanwhile, figure 3(c) shows that 
most of the measurements are taken in the range of depth of 1-30 m, which can be explained due the 

fact that most of the investigation are most interested in top 30 m soil layer. Figure 3(d) shows that most 

common soil type in the dataset are of clay type followed by sandy soil. 

(a) (b) 

 
 

(c) (d) 

 
 

Figure 3. Histograms of the parameters in the dataset: (a) Vs, (b) Nspt, (c) z and (d) st. 

2.3.  Base Models for Ensemble Averaging 

There are five base models which constitutes the EN-PSO model: Multi-Linear Regression model 

(MLR), Random Forest model (RFR), Support Vector Machine model (SVR), Artificial Neural Network 

model (ANN) and k-Nearest Neighbor Model (KNN). All of these models are trained using the Train 
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set. The models were programmed using Scikit-Learn [15] module in Python. The final output of the 

EN-PSO model are calculated using equation (2). 

∑ 𝑤𝑖+𝑂𝑢𝑡𝑖𝑖

∑ 𝑤𝑖𝑖
+ 𝑤𝐵                                                                       (2) 

where, wi is the weight for model i, Outi is the output for model i and wB is the bias term.  

wi, wA and wB are calculated using PSO. The cost function used by PSO in this case is the mean 

absolute error of the prediction of EN-PSO on the Validation set. The Validation set was used instead 
of the Train set in order to avoid overfitting which would cause the model to not generalize well. The 

parameters of the PSO algorithm were set to 30 particles, c1 = c2 = 0.25, w = 0.9, boundary of (-10, 10) 

and a total of 20 runs of 140 iterations. 

 

3.  Result and Discussions 

This section summarizes the discussion and results of this study. Subsection 3.1 shows the comparison 

between the performance of each Base Models (MLR, RFR, SVR, ANN, KNN) on the Test set. 
Meanwhile, subsection 3.2 will present the results of using PSO to find the optimal weights for equation 

2. Afterwards, subsection 3.3 will discuss the difference in performance between MLR and EN-PSO 

using the test set, thus concluding whether or not the EN-PSO model was able to improve upon the 
performance of the MLR model. Next, subsection 3.4 will compare the performance between EN-PSO 

and the suggested Universal Correlation (refer subsection 1.4). The final subsection, subsection 3.5, 

would present the empirical equations derived from the MLR model and discuss the suitability of the 
equations for different soil types. 

 

3.1.  Performance of each Base Models 

 
Figure 4. Performance of each Base Models on the Test set 

 

It can be seen from figure 4 the MLR model outperforms the other Base Models, scoring the lowest in 
terms of mean average error (MAE), root mean squared error (RMSE) and mean absolute percentage 

error (MAPE) while also scoring the highest for coefficient of determination (R2). It should be noted 

that the score for each performance metrics was normalized to values in the range of 0.1-0.9 in order to 
enable comparisons across the four categories. Table 3 shows the unscaled value for the performance 

metrics score for each of the Base Models. 
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Table 3. Performance Metrics Scores for each Base Models 

 MLR ANN KNN RFR SVR 

MAE 24.80 39.80 34.05 31.87 34.31 

RMSE 32.43 49.66 38.21 44.04 40.27 

MAPE 0.101 0.155 0.157 0.143 0.143 

R2 0.89 0.78 0.85 0.81 0.85 

 

From table 3, it can be seen that the MLR model scored the lowest in the MAE category. It is the 

only model that was able to score a value of under 25. Meanwhile, the RMSE category shows a similar 

trend. Again, the MLR model was the only model capable of reaching a score under the value of 35. In 
conjunction with that, the MAPE for the ML models was 0.101 which means that the error for the MLR 

model was 10.1 %, the lowest compared to all of the Base Models. Finally, in the R2 category, the MLR 

model scored the highest in the category with a value of 0.89. This shows that the MLR model was able 

to fit well over the distribution of the Test set. Subsection 3.3 would later discuss whether or not the 
EN-PSO model was able to improve upon the performance of the MLR model. 

 

3.2.  Optimal weights for EN-PSO outputs 

Table 4. Results of using PSO to find the optimal weights (Top five) 

Run Cost wANN wRFR wSVR wKNN wMLR wB 

6 22.0714 0.02673 2.26251 3.08802 -1.3702 8.61801 -3.0508 

19 22.073 0.07413 2.32814 3.22106 -1.5117 9.41667 -2.7688 

5 22.075 0.02286 -2.6641 -3.5855 1.49519 -9.5091 -3.3626  

17 22.0751 -0.0299 2.59001 3.47864 -1.4366 9.15359 -3.4105 

10 22.0752 0.02684 -2.0346 -2.7294 1.12121 -7.1507 -3.4378 

 

Table 4 shows the top five result for the optimal weights using PSO. The first column denotes the run 

no. on which the weights were found and the rows are sorted based on the value of the final cost (lowest 

is the best). There were a total of 20 runs of PSO simulations run and these five runs are the best five. 
The cost was calculated based on the prediction value of equation 2 on the Validation set. 

It is shown in table 4 that the optimal weights were found during run no. 6, with wANN = 0.02673, 

wRFR = 2.26251, wSVR = 3.08802, wKNN = -1.3702, wMLR = 8.61801 and wB = -3.0508. It can be seen that 
PSO algorithm consistently places most of the weights on wMLR, showing agreement with the result of 

the previous section where the MLR model was seen to be the best in all category. Meanwhile, the 

weights for wANN seems to suggest that the ANN model is almost redundant. However, the ANN models 

was still kept as one of the Base Models due to little difference in computation cost. 
 

3.3.  Comparison between performance of MLR versus EN-PSO 

Table 5. Percentage of improvement for EN-PSO over MLR 
model 

 MLR EN-PSO Percentage of improvement (%) 

MAE 24.800 22.085 10.95 

RMSE 32.433 31.741 2.13 

MAPE 0.101 0.091 9.54 

R2 0.890 0.895 0.56 

 



GEOTROPIKA 2019

IOP Conf. Series: Materials Science and Engineering 527 (2019) 012012

IOP Publishing

doi:10.1088/1757-899X/527/1/012012

8

 

 

Table 5 shows the performance metrics score of the MLR and EN-PSO model. It can be seen that the 

EN-PSO model improved upon the MLR model across all four categories. EN-PSO showed the most 

improvement over the MLR model in the MAE category, improving from 24.8 to 22.085 which is a 

10.95 % improvement. Meanwhile, the RMSE was improved by a modest 2.13 % from 32.433 to 31.741. 
Using the ensemble method of EN-PSO, the score for MAPE improved by 9.54 % with the MAPE score 

of EN-PSO being 9.1 % which is less than 10 %. Finally, the R2 was improved by a modest 0.56 % 

increasing from 0.890 to 0.895. Noting on these improvements, it is clear that the ensemble method was 
able to improve upon the performance of the MLR model. Figure 5 shows the percentage improvement 

for the EN-PSO model compared to the MLR model. 

Figure 5. Percentage of improvement for EN-PSO model over the MLR model 

 3.4.  Comparison between EN-PSO versus suggested Universal Correlation 
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(e) 

 

Figure 6. Distribution of prediction on Test set for: (a) AM-ALL, (b) AR-ALL, (c) AM-SN-CL, (d) 

AR-SN-CL and (e) EN-PSO 

 

In order to enable an unbiased comparison between the various models, a slightly modified Test set was 

used. This was due to fact that model AR-SN-CL and AM-SN-CL are intended for use on sand and clay 

only therefore this modified Test set only contains Vs measurements in soil of type sand clay only. Each 
graph in figure 6 is a comparison between the prediction distribution of each model compared to real 

observation of Vs measurements in the modified Test set. 

It can be seen from figure 6(a) and 6(b) that both AM-ALL and AR-ALL, which are both developed 
for use of all soil types, both have a tendency to underpredict the value of Vs. The error value for both 

these models shows an increasing trend as it goes into the higher Vs range value. Meanwhile, figure 6(c) 

and 6(d) shows better performance for AM-SN-CL and AR-SN-CL although like AM-ALL and AR-

ALL it’s error values increase in the higher Vs range value. This also serves to highlight the importance 
of taking the soil type into account when predicting Vs value since that is the main difference between 

these two group of models. Finally, figure 6(e) shows that the EN-PSO’s prediction distribution was 

able to follow the real distribution closely in average. Unlike the previous four models, EN-PSO was 
able to follow the real distribution even in the higher ranges of Vs values. Table 6 and figure 7 further 

shows that when comparing across all four performance metrics, the EN-PSO model was the best 

performing model.  

 

Table 6. Performance metrics score for each of the model using the modified Test set 

 AM-ALL AM-SN-CL AR-ALL AR-SN-CL EN-PSO 

MAE 49.68 44.17 50.76 43.74 24.26 

RMSE 67.50 62.72 68.53 61.48 33.56 

MAPE 0.172 0.156 0.177 0.155 0.096 

R2 0.58 0.61 0.58 0.61 0.88 
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Figure 7. Performance metrics score (standardized) for each of the model using the modified Test set. 

3.5. Empirical Equation 

Even though the EN-PSO model has been proven to perform better than the MLR model, a disadvantage 
of the EN-PSO model is that there is no simple correlation that can be derived from the model compared 

to the MLR model. Considering that the performance of the MLR model is not far behind that of the 

EN-PSO model, this paper will present three empirical correlations as alternative to the EN-PSO model 

for cases where the use of simple correlations is preferred. Technically, there are five (one for each soil 
type) empirical correlations that can be derived from the MLR model. However, this paper will only 

present three (for sand, silt and clay) empirical correlations due to the low number of gravel and rock 

samples in the dataset. The following shows: equation (3) (for clay soil type), equation (5) (for sand soil 
type) and equation (6) (for silt soil type): 
 

𝑉𝑠(𝐶𝑙𝑎𝑦) = 0.66 𝑁𝑆𝑃𝑇 + 4.39 𝑧 + 101.10                                                (3) 

𝑉𝑠(𝑆𝑎𝑛𝑑) = 0.66 𝑁𝑆𝑃𝑇 + 4.39 𝑧 + 135.27                                               (4) 

𝑉𝑠(𝑆𝑖𝑙𝑡) = 0.66 𝑁𝑆𝑃𝑇 + 4.39 𝑧 + 253.28                                                (5) 

4.  Conclusion 
A Vs measurements dataset was compiled from five papers (refer table 2) to be used to develop 
prediction models for this paper. 5 Base models were developed using a Train set randomly selected 

from this dataset: MLR, RFR, SVR, ANN and KNN. These Base models were then combined into an 

ensemble model named EN-PSO. The weights for Equation (2) was then calculated using PSO. The 
performance of each models were then compared and it was shown that EN-PSO was the best in all four 

performance metrics: MAE = 22.085, MAPE = 9.1 %, RMSE = 31.741 and R2 = 0.895. In addition, it 

was also shown that the EN-PSO model was able to improve upon the performance of the MLR model, 
which the most accurate among the Base models. Comparisons were also made between EN-PSO and 

other suggested Universal Vs correlations and EN-PSO was shown to outperform the other correlation 

based on prediction using a modified Test set. Three new empirical correlations as alternative for the 

EN-PSO model was also presented. 
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