Johari, N. A. and Lau, Kwan Yiew and Abdul Malek, Zulkurnain (2020) Structure of polypropylene-based nanocomposites containing calcium zirconate. In: 2020 IEEE Student Conference on Research and Development, SCOReD 2020, 27 September 2020 - 28 September 2020, Johor, Malaysia.
|
PDF
286kB |
Official URL: http://dx.doi.org/10.1109/SCOReD50371.2020.9250932
Abstract
Polypropylene (PP) has recently been proposed as a good alternative to cross-linked polyethylene (XLPE) in the field of dielectrics due to PP's beneficial properties to withstand higher thermal endurance of up to 150°C along with its ability to be recycled with ease, when compared with XLPE. However, PP is much stiffer than XLPE, making it unsuitable to be extruded as a high voltage cable insulation. Furthermore, PP has poor thermal conductivity under room temperature when compared with XLPE, which will otherwise result in inferior dielectric performances. Therefore, PP needs to be modified to alter its physical as well as electrical properties. In the current work, ethylene-propylene-diene monomer (EPDM) was proposed to be combined with PP to produce a PP blend with reduced overall stiffness. To increase the thermal conductivity of the PP blend, nanofillers were proposed to be added to the PP blend. For these reasons, the structure of the proposed materials was investigated by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC).
Item Type: | Conference or Workshop Item (Paper) |
---|---|
Uncontrolled Keywords: | EPDM, nanofiller structure, polypropylene, XLPE |
Subjects: | T Technology > TK Electrical engineering. Electronics Nuclear engineering |
Divisions: | Electrical Engineering |
ID Code: | 89983 |
Deposited By: | Yanti Mohd Shah |
Deposited On: | 31 Mar 2021 06:32 |
Last Modified: | 31 Mar 2021 06:32 |
Repository Staff Only: item control page