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Abstract. Flood disaster is a major disaster that frequently happens globally, it brings serious 
impacts to lives, property, infrastructure and environment. To stop flooding seems to be difficult 
but to prevent from serious damages that caused by flood is possible. Thus, implementing flood 
prediction could help in flood preparation and possibly to reduce the impact of flooding. This 
study aims to evaluate the existing machine learning (ML) approaches for flood prediction as 
well as evaluate parameters used for predicting flood, the evaluation is based on the review of 
previous research articles. In order to achieve the aim, this study is in two-fold; the first part is 
to identify flood prediction approaches specifically using ML methods and the second part is to 
identify flood prediction parameters that have been used as input parameters for flood prediction 
model. The main contribution of this paper is to determine the most recent ML techniques in 
flood prediction and identify the notable parameters used as model input so that researchers 
and/or flood managers can refer to the prediction results as the guideline in considering ML 
method for early flood prediction. 

1. Introduction  
Flood is the most devastating disaster that brings great damages such as loss of lives, and destruction of 
infrastructures, properties and environments, which consequently result in economic losses. These 
losses can be prevented or reduced by implementing non-structural measurement such as flood 
prediction so that the next coming flood can be forecast and flood information is available ahead of the 
event. By having the predicted flood event, governmental authority and people at the potential flooding 
area will be able to prepare for the action to be taken and having proper decision. In this case, lives, 
properties, infrastructures and environments can be protected and the effects on economic damage can 
be mitigated. 
 
Research in the field of flood prediction has been conducted for a few decades to predict flood events 
and it continues to remain the challenging topic to date. In general, two types of flood prediction 
approaches are applies in flood prediction scenarios,  one is physical principle-based models [1] that 
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include models based on the principles of physical processes such as  rainfall-runoff model[2, 3], 
hydrodynamic model [4], soil and water assessment tools[5]. Although previous studies have proved 
that physical principle-based models has great ability to predict flood in different scenarios but the model 
is complex and taking long time in computation. Additionally, it also requires huge amount of input 
parameters that describe the physical characteristics, but the required data is not always available and 
not easy to collect. Furthermore, applying physical model requires comprehensive understanding and 
skill competence in hydrology as well as the ability to compute model with complexities. With these 
limitations of physical model, a data-driven model is an alternative model that has been used in flood 
prediction; among the typical models, autoregressive moving average (ARMA)[6], multiple linear 
regression (MLR) and autoregressive integrated moving average (ARIMA)[7] are considered as 
traditional statistic models that are often used for flood frequency analysis(FFA) technique applied in  
forecasting flood. In comparison of physical principle-based models and statistical approaches, it is 
found that statistical approaches are more efficient in terms of computational cost and generalization, 
furthermore, more components are required to process physically based model. However, traditional 
statistical methods are reported to be less accurate in predicting flood and it is not suitable when applied 
for short-term flood prediction[8].    
 
Advance data driven model such as machine learning (ML) is an attractive approach to overcome the 
limitation of physical principle-based models model and traditional statistical model. ML is emerging 
as a popular topic in hydrological problems specifically in time series flood forecasting. It is mainly to 
identify the relationship or pattern between the input parameters and the output. On top of that, ML 
models formulate the nonlinearity of flood into mathematical expression based on historical data without 
the need of fundamental knowledge in physical process. Another reason that makes ML models become 
popular is less computational cost; the process of ML is easy to implement and develop such as in model 
training, testing and evaluation, and with somewhat less complexity. Mosavi, Rabczuk and Varkonyi-
Koczy [9] state that ML method is suitable for applying in flood prediction and its performance 
outperforms the conventional approaches and has been proved for greater accuracy. 
 
Previous studies have applied diverse methods and techniques either within ML’s boundary or integrated 
with other approaches in order to optimize the prediction accuracy. Accuracy measurement is used to 
evaluate model performance that researchers always evaluate through mean error (ME), mean squared 
error (MSE), root mean square error (RMSE), mean percentage error (MPE), mean absolute percentage 
error (MAPE) and squared correlation factor, R2, which is also known as the correlation coefficient 
(CC). The higher the result accuracy is, the better the flood prediction model will be.  
 
A few researches have been done on the comparison of flood prediction approaches but none has 
investigated and evaluated flood prediction approaches based on ML, and highlighted on the key 
parameters. Hence, this study intends to investigate and evaluate ML techniques and algorithms used in 
predicting flood as well as investigate the input parameters used for flood modelling. The outcome of 
this study will contribute to researcher or hydrologist in selecting the suitable ML techniques for 
implementing flood prediction and analysis task. Additionally, this study is done through systematic 
literature review that is further discussed in the next section. 
 
2. Related work 
There are a few researches that were similarly conducted reviewing the methods and techniques used in 
flood prediction, and analysis such as by Devia, Ganasri and Dwarakish [1], who had reviewed 
hydrological model and discussed on the three types of flood prediction models. They are physical 
principle-based model, conceptual model and data driven model. Advantages and drawbacks of each 
model were discussed. However, this paper focused on physical principle-based models that the authors 
stressed on different types and applications of physically based model such as SWAT, SHE/MIKE SHE 
model, but data driven models are not discussed in depth. Teng, Jakeman, Vaze, Croke, Dutta and Kim 
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[4] have reviewed and compared different types of hydrological model and hydrodynamic model, and 
further categorized them into 1D model, 2D model and 3D model. Based on the revision of research 
articles in recent years, there is only one paper that specifically reviewing data driven model based on 
ML technique [8], the study was done through comparative study of the most recent ML techniques for 
flood prediction model but no discussion on the important of input parameters. 
 
3. Methodology 
This study is conducted through systematic literature review, online database such as Scopus was the 
main database for article extraction. The period was scoped for the most recent 5 years from year 2014 
to 2018. The terms used in searching for related articles are “flood prediction” and “flood forecasting”. 
As a result, the total of 84 articles were extracted, and 29 out of 84 were selected as the relevance articles. 
 
This article is structured into five parts; Part 1 presents introduction and background of this study. Part 
2 presents related studies. Part 3 presents the popular ML techniques applying in flood prediction. The 
review result and discussion were explained in part 4 and the conclusion of this article is stated in the 
last section.  
 
4. Machine learning technique and algorithms apply in flood prediction scenarios.  
Machine learning (ML) is defined by Samuel [10] as “Field of study that gives computers the ability to 
learn without being explicitly programmed", which basically means that in ML study we can assign 
some tasks to the computer and let it learn based on the task given, and we do not need to obviously 
code the program.  Another well elaborated by Mitchell [11] "A computer program is said to learn from 
experience E with respect to some class of tasks T and performance measure P, if its performance at 
tasks in T, as measured by P, improves with experience E”. to relate this quote in applying ML to flood 
prediction, we can say that to predict the future flood events (Task T), we can process though machine 
learning algorithms with available historical data (Experience E) and when it is effectively “learned”, 
then the model will predict better for future flood events with better performance measurement (P). 

4.1. Types of machine learning 
Different sources describe different types of learning that categorize under ML method. There are 3 
types of learning that commonly applied in machine learning. They are supervised learning, 
unsupervised learning and reinforcement learning[12-14] 

4.1.1 Supervised Learning 
Supervised learning is the type of ML that needed to train with labelled data, this leaning step requires 
a pair of input data and preferred output. Basically, we teach the computer how to do the procedure, then 
let it use its new knowledge to do the next step. This is also called learning from exemplars. Some 
techniques that are categorized under supervised learning support vector machine (SVM), Naïve Bayes, 
deep learning etc. The recent applications that are applied in supervised learning are spam filter for 
receiving email, Cancer detection that is applied in healthcare and detecting fraud activities of credit 
card usage. 

4.1.2. Unsupervised Learning 
Unsupervised learning is another type of ML that does not need to train with labelled data and the 
learning process is only provides inputs without desired output. The algorithms will keep trying to 
explore the input data and find the pattern that similar and group as the same category.  In another word, 
we allow the computer to learn how to carry out the task, and use this to determine structure and patterns 
in data. Some of unsupervised techniques include neural network, clustering, and K-nearest neighbour 
(KNN), etc. Examples of recent application that is by unsupervised learning is customer segmentation 
into groups with the same preferences, detecting unusual access to a website.  
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4.1.3. Reinforcement Learning 
This type of ML is classified between supervised and unsupervised learning. This ML works as the 
algorithm gets informed when the output displays incorrectly, whereas the learning algorithm will not 
get informed about the way to correct it. To get the right output, the learning algorithm needs to 
investigate and attempt different possibilities.  
 
In order to predict the flood, selecting and applying algorithms is required in the process of ML. The 
following section will further explain different types of ML algorithms for the application of flood 
prediction.  

4.2. Type of machine learning algorithms  

4.2.1.  Support Vector Machine (SVM) 
SVM is considered as the most widely applied state-of-the-art machine learning method. It is mainly 
used for classification problem. The mechanism of SVM is applying the principle of margin calculation. 
It basically evaluates margins between the classes. The margins are evaluated in such a way that the gap 
between the margin and the classes is maximum and thus, classification error is minimized. Figure 1 
shows the basic concept of SVM. SVM is one of ML algorithms that is considered popular in modelling 
flood, it is also known as robust and efficient algorithm in predicting flood[15, 16]. Recent researches 
have applied SVM in modelling flood[17-19]. Li, Ma, Jin and Zhu [20] implemented a novel flood 
forecasting model based on SVM and boosting learning algorithms, and found that the overall accuracy 
is 0.983 which is close to 1, hence the prediction precision is high. On top of that this study applied 
boosting algorithm in order to increase accuracy.   
 

 
Figure 1   Basic concept of SVM 

4.2.2. Bayesian algorithm 
Bayesian algorithm is generally used for solving classification problem [21]. The principal design of 
Naïve Bayes depends on the conditional probability. Naive Bayes is a probabilistic ML algorithm that 
can be expanded broadly in classification problem i.e. classifying spam in email, documents 
classification, sensation estimation etc. In flood prediction scenarios Jangyodsuk, Seo, Elmasri and Gao 
[22] used Bayesian algorithm with an optimization function to maximize  mutual information. 
Noymanee, Nikitin and Kalyuzhnaya [23] proposed Bayesian linear model for predicting flood in Pattani 
province, Thailand. This algorithm was applied for rebuild the historical rivers floods and predicting the 
possible flood. 

4.2.3. Clustering 
Clustering known as grouping is classified under unsupervised learning, when the algorithm begins, it 
automatically forms grouping. The class that hold the same characteristics is categorized in the same 
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group.  Dissimilarity will be grouped as different clusters. K-mean is an algorithm under clustering 
technique that useful with analysis of large dataset. Many researches applied clustering in variety of 
hydrological conditions like modelling of rainfall-runoff [24], flood estimation for ungauged catchment 
[25], flood risk assessment [26] etc.  Sood, Sandhu, Singla and Chang [27] used K-mean clustering 
algorithm to estimate the recent flood situation and evaluate flood inundation area. This study integrated 
ML with Holt-Winter's forecasting method for flood prediction by utilizing meteorological data as input 
dataset. The basic concept of clustering is shown in Figure2. 
 

 
Figure 2 Clustering concept 

4.2.4. Artificial Neural Network (ANN) 
Artificial neural network is defined as the connection of input signal and output signal utilizing a model 
that imitates network of a biological brain which responds to any incentives from sensory inputs. ANN 
applies a network of artificial neurons or notes to produce the output e.g. input layer connected to the 
hidden layer with the assigned weighting of each connection, the output that propagated from the hidden 
with the assign weighting will produce the output as shows in Figure 3, the basic concept of neural 
network. In flood forecasting, ANN has attracted the attention of researchers enduringly [28] as it has 
the great competence in nonlinear modelling and complex framework without clear physical 
justification. Hydrologist examines ANN in different flood scenarios such as flood inundation 
forecasting model [29], rainfall-runoff analysis[30], stream flow forecasting [31]. Recent researches 
have  introduced hybridization approach within ML model or other models like physical based model 
in order to  maximize accuracy rate[32, 33]. The components of NN such as Deep learning, BPNN and 
FFNN are further explain below. 
 

 
Figure 3  Basic concept of neural network, three layer architecture 

[34, 35] 
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• Deep Learning is the powerful technique of learning artificial neural network, it uses multiple 
layers to increasingly extract higher level features from raw input. Deep learning is the best 
solution to solve problem in image recognition, speech recognition, and natural language 
processing. It is also best solution in time series data analysis that can be applied in flood 
prediction problem. 

• Back Propagation Neural Network (BPNN) is the algorithm that processed within artificial 
neural network. When feed forward neural network is processed, if error found back propagation 
algorithm will take part and adjust the weighting then process again till the result is satisfied.  

• Feed Forward Neural Network is the algorithm used in neural network where the information 
direction is fed forward i.e. from input layer to hidden later then output later, however, 
weightings are not adjusted.  

4.2.5. Principal Component Analysis (PCA) 
Principal Component Analysis (PCA) is an algorithm used for dimension reduction of dataset when 
required, whereas the variability of the dataset has to be maintained as much as possible[36]. This 
technique is used in data exploration and preparation in ML method.  

4.2.6. Random Forest  
Random Forest (RF) is a learning algorithm that works as a large collection of uncorrelated decision 
tree then a lot of decision trees are created and use them to make a classification based on the most voted 
class for result optimization. The following Figure 4 shows random forest classification principle. In 
hydrological, RF has been used to develop flood hazard risk model [37]. Garcia, Retamar and Javier 
[38] used RF algorithm for modelling flood forecasting and deliver flood advisory to the users 
beforehand.  

 
Figure 4  RF classification principle [37] 

 
5. Result and discussion 
ML method is popular in the field of hydrology. Researchers conducted research by applying different 
types of ML techniques and algorithms for flood prediction in order to maximized prediction accuracy 
and model optimization. According to the survey as summarized in Table 1, shows the summary of ML 
techniques, strategies and input parameters used in different flood prediction scenarios.  Out of 29 
papers, there are 4 papers that used single ML algorithm i.e. ANN[39, 40], Bayesian algorithm[22, 
23]WEKA data mining technique[41] . 10 papers out of 29 applied integrated approach with other 
models, the integration includes within the boundary of ML method or integrated ML with physically 
based model i.e. HEC-HMS. ANN is considered as the most widely used machine learning algorithm in 
flood prediction, with the add-on algorithm such as BPN, FFNN and MLP will contribute to model 
optimization, in this survey there are 11 papers of the total 29 paper categorized as algorithm 
optimization study. 5 papers out of 29 papers used the collection of related algorithms to conduct their 
study. SVM integrated with other algorithms such as GRA, boosting and PCA[20, 42]. Deep learning is 
another method that recently being use in flood prediction scenarios and it obtains high accuracy rate. 
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Data mining tool such as WEKA and other physically based model such as TOPMODEL, Xinanjiang 
model, MIKEFLOOD are integrating with ML model for the improvement of model accuracy.   
 
Mosavi, Ozturk and Chau [8] suggested four strategies for improving flood prediction accuracy, first 
strategy is hybridization that is to integrate two or more within ML methods or to integrate ML methods 
with physically based model. Second strategy is algorithms ensemble which the model collected and 
run multiple related algorithms and choose the best algorithm that obtain the most accurate result. Using 
ensemble technique will decrease the uncertainty of prediction. Third is algorithm optimization is 
another strategy to enhance the quality of ML algorithms, e.g. to improve ANN, applying BPN and 
FFMLP for model optimization. Lastly, data decomposition is another way to improve prediction 
accuracy. When the quality of dataset is improved, the prediction accuracy will parallelly improved. 
Hence, this study found that model optimization and hybridization within ML approach have gained 
much popularity as they often perform better than individual models [43]. On the other hand, 
hybridization of ML approach with physically based model remain less popular as compare to 
hybridization within ML approach, ensemble and model optimization. The reason could be the cost of 
computational and model complexity may contribute to less popularity. 
 
On top of that, input parameters are important elements in hydrological studies. Chen and Han [44] 
classified hydrological data in three dimensions, one is natural dimension that included measurements 
of precipitation, stream flow, soil moisture, ground water, temperature and humidity, etc. The methods 
of collecting data can be from in-situ observation or point to radar application, remote sensing, satellites, 
and drone. Second is social dimension which refers to the reaction of human society towards of water 
environment. The data includes Twitter data that is now popular and able to capture, analyse and create 
meaningful information in water environment applications. Another dimension is business dimension 
that covered data of water supply, waste water collection and treatment, etc.  However, this dimension 
is not directly related to flood management, but is it more into water management.  
 
In the 29 reviewed articles, natural data source is the only dimension being used, none has considered 
social and business dimensions. Water level and rainfall remain the dominant input parameters that 
required in all flood modelling due to it is significantly contribute in the field of flood scenarios. 
Additionally, input parameters have to be precisely identified in flood modelling based on the selected 
conditions in order to determine the most accurate output. When prediction output generates 
unacceptable number of errors, the input parameters has to reset and re-process the model then obtain 
acceptable result. According to Devia, Ganasri and Dwarakish [1],  the best model is the one which 
gives result closed to reality with the use of minimum parameters and less model complexity. 
 
 Table 1. shows the summary of ML techniques, strategies and input parameters used in different flood 
prediction scenarios 

ML techniques Strategy for model 
improvement 

Input parameters References 

ANN + HS + DE Algorithms ensemble gauge, area, velocity, 
discharge, rainfall, average 
temperature, average wind 
speed and pressure 

[45] 

ANN + Gradient Descent 
+ Levenberg Marquardt 

Algorithms optimization water level, humidity, 
pressure, rainfall, 

[46] 

Multi-layer Perceptron Single algorithm water level, rainfall [39] 
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ANN + BPN + FFNN + 
LM 

Algorithm optimization water level [47] 

Clustering + Holt-
Winter's 

Hybridization metrological data [27] 

ANN + MLP + LM + Fire 
fly algorithm 

Hybridization stream flow [46, 48] 

Deep learning + stacked 
autoencoders (SAE) + 
BPNN 

Hybridization rainfall [49] 

ANN + Gradient 
Descent(GD) + 
Levenberg 
Marquardt(LM) + 
Bayesian Regularization 
(BR) 

Algorithms ensemble temperature, rainfall, 
humidity, sea level, 
pressure, wind, and water 
level. 

[50] 

Apriori algorithm + Data 
mining tools (WEKA) 

Hybridization flood area, water level, 
flood status 

[41] 

ANN Single algorithm water lever, rainfall [40] 

Neural network 
regression 

+ Bayesian linear 
regression + Boosted 
decision tree regression + 
Decision Forest 
Regression + linear 
regression model 

Algorithms ensemble water level [23] 

NWP + BPN Hybridization global parameter for NWP 
model in PNG and JPEG 
format and local parameter 
for temperature, humidity, 
wind speed. 

[32] 

Datamining technique 
(WEKA) 

Single algorithm water level [51] 

ANN + Chaos theory Algorithm optimization water level and rainfall 
during flood 

[52] 

Bayesian based learning 
algorithm 

Single algorithm water level, rainfall and 
other hydrological data 

[22] 

ANN, feed forward 
Multilayer perceptron 
(FFMLP) 

Algorithm optimization water level during flood 

 

[53] 

ANN+ PCA + Fruit fry 
algorism 

Algorithm optimization water flow [33] 

Random forest algorithm Algorithms ensemble water level  and rainfall [38] 
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Integrated LISFLOOD 
hydrological model and a 
symbolic regression 
method 

Hybridization  DEM, water level, rainfall [54] 

SVM + boosting 
algorithm + kernel 
principal component 
analysis (KPCA) 

Algorithm optimization stream low data  

 

[20] 

multilayer perceptron 
(MLP) + the Cuckoo 
search (CS) 

Algorithm optimization water level data [55] 

ANN + BPN+ RFN Algorithm optimization Min, max and avg 
temperature, min, max and 
avg humidity, avg wind 
speed, avg sea level 
pressure and avg rainfall. 

[28] 

HEC-HMS + GANN  + 
ANFIS 

Hybridization rainfall and runoff 
discharge 

[56] 

ANN +Levenberg-
Marquardt(LM) 
algorithm 

Algorithm optimization water level [57] 

SVM + GRA Hybridization Permeability, perforation, 
oil saturation, supply oil 
radius, perforation density, 
control area, control 
reserve, reservoir thickness, 
degree of reservoir drilling, 
water cut, hole radius, 
flowing bottom, hole 
pressure 

[42] 

Clustering + KNN Algorithm optimization rainfall [58] 

OLAP-based 
multidimensional cube+ 
MIKE FLOOD 

Hybridization rainfall and water level [59] 

ANN + Fuzzy Logic+ 
BPN 

Algorithm optimization river discharge data [60] 

Hybrid model of the 
Xinanjiang model and 

TOPMODEL 

Hybridization rainfall 

runoff depth 

[61] 

 
6. Conclusion  
This study has compared and evaluated ML methods applied in flood prediction scenarios and 
parameters in the past 5 years. The findings show that ANN is the most popular ML method in predicting 
flood. However, most researchers applied model optimization strategy in order to improve the model 
accuracy by adding BPN and FFMLP into ANN model. Hybridization within ML method is another 
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technique that many researchers have conducted in their studies, however, hybridization of ML with 
physical principle-based model is less popular as compare to hybridization within ML technique. The 
less popularity of hybridization between physical principle-based model and ML could be due to the 
complexity in processing  physical principle-based model. Model ensemble is another technique that 
used to stabilize the prediction accuracy but only few studies adopted ensemble technique. Hence, more 
opportunities are open for researchers to explore this technique in the area of flood prediction. It is 
suggested that the future research is needed to find out the reason of less popularity in model 
hybridization of ML integrated with physical principle-based model and include the study of data 
decomposition. Additionally, with regards to input parameters, this study only found the natural 
dimension that commonly used as input parameters for all the reviewed papers, it is recommended that 
social dimension should be included as data source to capture the most recent humans’ thought toward 
water related condition as it may significantly contribute to improve the prediction accuracy. 
Furthermore, ML application in the field of environment and water management should be extended to 
various scenarios and considering multi sources data such as image, audio, video and text in processing 
and analysing data in order to obtain the useful knowledge for preparing, managing and  preventing 
damages. 
 
Nomenclatures 
ANN   Artificial neural network 
MLR   Multiple linear regression  
ML   Machine learning 
ARIMA   Auto regressive integrated moving average 
ARMA   Auto regressive moving average 
SVM   Support vector machines 
FFNN   Feed-forward neural network 
MLP   Multilayer perceptron 
BPNN   Backpropagation neural network 
FFA   Flood frequency analysis 
SWAT   Soil water analysis tool 
KNN   K-nearest neighbor  
NN   Neural network 
PCA   Principle component analysis 
RF   Random forest 
HS   Harmony search 
DE   Differential evaluation  
LM   Levenberg– Marquardt  
NWP   Numerical weather prediction  
CS   Cuckoo search 
HEC-HMS   Hydrological engineering center - hydrological modeling system  
ANFIS    Adaptive neuro- fuzzy inference system  
OLAP   Online analytical processing  
GANN   Genetic algorithm neural network  
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