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Abstract. Replacement of Ordinary Portland cement (OPC) with geopolymer concrete (GPC) 

using fly ash is currently utilized in the construction industry to reduce the excessive carbon 

footprint. However, fly ash has lower strength development compared to OPC. Due to that 

reason, ground granulated blast furnace slag (GGBFS) is chosen to be blended with fly ash to 

produce GPC with improved mechanical strength. The analysis of the mechanical properties 

includes workability, compressive strength and splitting tensile strength of hardened GPC 

specimens have been carried out. The specimens were prepared with different percentages of 

GGBFS, from 0 % up to 20 %, partially replacing the fly ash-based GPC. Experimental results 

showed that the slump, compressive strength and splitting tensile strength of the GPC increase 

as the GGBFS percentage increases and found to be suitable for structural application. 

1. Introduction 

Fly ash is an industrial by-product produced from coal combustion, whereas ground granulated blast 

furnace slag (GGBFS) produced from the burning of melting iron ore [1]. Those by-products have the 

potential to be used as cementitious materials in reducing the excessive carbon footprint from 

Ordinary Portland cement (OPC) manufacturing. Recently, GGBFS is introduced in geopolymer 

concrete (GPC) to partially replace fly ash-based geopolymer concrete as a substitution for OPC in 

construction industries. It is one of the ways to reduce OPC manufacturing more effectively by 

reducing carbon footprint up to 9% [2]. Nowadays, there are millions of tons of those by-products 

generated and are unutilized or underutilized, leading to environmental issues. It may be caused by 

storage problem and pollution to the surrounding field [3-4]. Since the environmental problems and 

health issues have arisen, the concern among researchers to investigate the utilization of such by-

products as potential construction materials has been drastically increased [2,4-5]. Although the 

application of GGBFS is still limited compared to fly ash, the durability and mechanical performances 

of both by-products are promising in replacing OPC as construction materials. Thus, this paper will 

assess the effect of GGBFS utilization as a partial replacement in fly ash-based GPC as a sustainable 

alternative for construction materials. 

2. Experimental Methods 

2.1. Raw Materials and Process of Design Mix 

The base materials for manufacturing GPC were fly ash and GGBFS. They were obtained from Jimah 

Power Plant, Port Dickson in Negeri Sembilan and YTL Cement Malaysia, Kapar in Klang, 

respectively. GGBFS was utilized as a partial replacement in fly ash-based GPC. The chemical 
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composition of both materials was analysed through X-ray fluorescence (XRF) test at Analytical 

Laboratory in Universiti Teknologi Malaysia, Kuala Lumpur. Four main chemical oxides could affect 

the performances of both fly ash and GGBFS in GPC, known as calcium oxide (CaO), silica oxide 

(SiO2), aluminium oxide (Al2O3) and iron (III) oxide (Fe2O3). From previous studies, the variations of 

the compositions were considerably contributed to the performance of raw materials in GPC 

manufacturing [3,6-7]. Figure 1 and Figure 2 show the physical characteristics of both low-calcium fly 

ash and GGBFS samples obtained from the manufacturers. Details on XRF results governing the 

performance of fly ash-based GPC will be explained further in the next section. 

 

 

Figure 1. Class F fly ash sample [4] 

 

Figure 2. Ground granulated blast furnace slag (GGBFS) sample [8] 

As preparation for alkaline activator in GPC, sodium hydroxide (NaOH) solution is produced by 

diluting a portion of NaOH pellets with distilled water in a volumetric flask. For instance, NaOH 

solution with a concentration of 14 M to be achieved consists of 14 x 40 = 560 g, where 40 is the 

molar mass of the NaOH. In other words, 560 g of NaOH pellets are mixed with 1 litre of distilled 

water to produce 14 M concentration of NaOH solution. The solution is then left to cool down to 

laboratory temperature so that the dissolution of the solution took place thoroughly before mixed with 

sodium silicate (Na2SiO3). The Na2SiO3/NaOH ratio is fixed to 1.5, where every 150 g of Na2SiO3 is 

mixed with 100 g of NaOH [9]. During the process, an exothermic reaction took place when the 

solution is stirred gradually, resulting in an extreme amount of heat released. Then, the activator is left 

to ambient temperature for 24 hours [10-11].  As a safety precaution, safety goggles, gloves and 

mask are recommended to be worn during the preparation of alkaline activator. For the GPC samples 

preparation, fly ash, GGBFS and aggregates are dry mixed in the laboratory pan mixer for about 3 to 4 

minutes. Then, the alkaline activators prepared, together with some extra water, are added to the dry 

mixture. The mixing continues for another four minutes. After placed in greased moulds, all the 

samples are subjected to oven curing at 60°C for 24 hours as optimum temperature [9]. Table 1 shows 

the details of the mix proportions of fly ash and slag-based GPC. The symbol C annotates concrete, 
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whereas the following acronym, TF, refers to Class F fly ash [12]. The following numbers 14 

annotates 14 M concentration of the alkaline activator utilized whereas the last acronym, S0, S10 and 

S20 annotate the percentage replacement of the total binder with GGBFS consisting of 0 %, 10 % and 

20 %, respectively. 

Table 1. Design mix of fly ash and slag-based GPC (kg/m
3
) 

Name Fly ash GGBFS 
Fine 

aggregates 

Coarse 

aggregates 

Alkaline 

activator 

Additional 

water 

C-TF-14-S0 500 - 707 1060 150 74 

C-TF-14-S10 450 50 707 1060 150 74 

C-TF-14-S20 400 100 707 1060 150 74 

2.2. Specimens and Testing 

Concrete cubes of 100 mm x 100 mm x 100 mm (27 numbers of samples) are used to evaluate the 

compressive strength of fly ash and slag-based GPC whereas concrete cylinders of 150 mm x 300 mm 

(27 samples) are used to assess the splitting tensile strength for the GPC. The compressive strength 

test is conducted based on BS EN 12390-6: 2009 using three cubes for each percentage of 0 % to 20 % 

and curing age of 7, 14 and 28 days, while splitting tensile strength are carried out in accordance to BS 

EN 12390-4: 2000 [13-14]. Three cylindrical specimens are tested for each age and percentage as well 

[10]. Figure 3 and Figure 4 show those specimens under compressive and splitting tensile test, 

respectively. Fly ash-based GPC without GGBFS addition (C-TF-14-S0) is considered as the control 

concrete specimens since there is no replacement of fly ash in the concrete. 

  

 
Figure 3: Compressive strength test 

 

 
Figure 4: Splitting tensile strength test 
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3. Results and Discussions 

3.1. X-ray Fluorescence (XRF) Analysis 

Fly ash is generally pozzolanic since SiO2 content reacts with calcium hydroxide from the cement 

hydration process to produce calcium silicate hydrate (CSH) gel thus produced cementitious 

compounds suitable for GPC manufacturing. Also, fly ash with higher CaO content can increase the 

compressive strength of the concrete in the early ages since the calcium content present plays a 

significant role in developing the compressive strength [3]. The presence of calcium ions produced a 

quick reactivity; thus, the geopolymer will yield rapid hardening in shorter curing time under heat 

curing. Although the strength for the fly ash-based GPC achieved is comparable to the standard OPC 

strength, improvement in strength development is still yet to be achieved [15]. The addition of GGBFS 

in the fly ash matrix is then applied to increase CaO content in the fly ash geopolymeric gel. This will 

result in the enhancement of compressive strength and overall performances of the concrete. The 

GGBFS is contributing in compressive strength due to its compactness of microstructure and thus 

enhance the hardening of fly ash and GGBFS blended geopolymer through C-S-H and C-A-S-H 

formation. The hardening is then followed by the formation of C-S-H, N-A-S-H and C-A-S-H [6]. 

Table 2 shows the results of XRF from current and some of the previous studies for both fly ash and 

GGBFS. The differences in chemical composition show varieties in terms of the mechanical 

performances that will be discussed in the next subsection. 

Table 2. Chemical composition of fly ash and GGBFS (%) 

Oxides  

Fly ash  

(Current 

study) 

GGBFS 

(Current 

study) 

Fly ash 

[5] 

GGBFS 

[5] 

Fly ash 

[16] 

GGBFS 

[16] 

Fly ash 

[3] 

Fly ash 

[18] 

SiO2 46.8 28.7 65.6 30.6 53.6 35.2 38.8 63.4 

Al2O3 18.4 12.3 28.0 16.2 33.0 21.4 14.7 30.5 

Fe2O3 6.08 0.5 3.0 0.6 5.5 1.8 19.5 3.0 

CaO 3.32 46.6 1.0 34.5 1.8 31.2 18.1 1.0 

3.2. Slump Test 

When the addition of GGBFS of 10 % and 20 % are applied, there are increments of 3.96 % and 4.90 

% of the slump, respectively. Figure 5 shows the workability values are slightly increased as the 

replacement of GGBFS increased. Higher GGBFS content will tend to produce a higher GPC slump 

with a higher strength [16,17].  It was suggested that the slump value is between 65 mm and 100 mm 

for fresh GPC [3]. Studies performed by Abdullah et al. and Gupta and Chandrakar using fly ash-

based GPC are compared with slump value in the current study. Based on Figure 5, the slump values 

of fly ash-based GPC observed are in line with the previous studies performed, with 3 % and 33.1 % 

higher in slump values for Abdullah et al. and Gupta and Chandrakar, respectively [3,18]. The 

variations of slump values may be attributed to the higher total of silica, alumina and calcium content 

in fly ash samples [19]. Table 2 shows Abdullah has 71.6 %, whereas Gupta and Chandrakar have 

94.9 % in the total content, which is higher than the current study with only 68.52 %. This also proves 

that different chemical composition of fly ash will produce a variation of the mechanical properties of 

GPC, including slump values. Addition of GGBFS is then applied and found to be effective in 

increasing the workability of the GPC, as shown in Figure 5. However, for 10 % and 20 % GGBFS 

replacement, slump result data are not shown since none of them are displayed in previous studies. 
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Figure 5: Relationship between slump and GPC containing a different percentage of GGBFS 

3.3. Compressive Test 

Table 3 and Figure 6 summarized the values of compressive strength for all mixes and the relationship 

between compressive strength and GGBFS percentage replacement. The database of S50, S75 and 

S100 annotate 50 %, 75 % and 100 % GGBFS replacement, respectively. They are collected from 

previous studies for comparison purpose [5]. It can be observed that the graph trend shows the strength 

increased significantly along with the percentage replacement of GGBFS. 

Table 3. Compressive strength for the GPC mix 

Mechanical 

property 

Age 

(days) 

Mix type 

C-TF-14-

S0 

(Current 

study) 

C-TF-14-

S10 

(Current 

study) 

C-TF-14-

S20 

(Current 

study) 

S50 [5] S75 [5] S100 [5] 

Compressive 

strength, f’c 

(MPa) 

7 28.4 44.1 47.7 40 44.4 52.4 

14 30.4 48.6 52.9 46.5 48.2 56.2 

28 32.8 48.9 53.2 53.5 55.5 58.6 

 

 
Figure 6: Compressive strength vs. GPC containing a different percentage of GGBFS 
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For fly ash-based GPC, there is an improvement in the compressive strength along the curing days, 

from 6.58 % to 13.41 %. After GGBFS replacement of 10 % to 20 % are applied on the fly ash-based 

GPC, the strength enhancement could be observed. Figure 6 shows 32.90 % to 37.45 % increment 

when 10 % GGBFS is added whereas 38.35 % to 42.53 % increment after 20 % GGBFS is added to 

the GPC along the curing days. The increment of GGBFS replacement in GPC for current study 

achieved a significant compressive strength compared to the control concrete even at seven curing 

days. Table 3 and Figure 6 show that the GPC for both current and previous studies achieved a range 

of 86.59 % to 90.18 % of the strength at 28 days, which is suitable for structural applications [5]. 

Besides that, setting time is an essential aspect for the fresh concrete before setting for proper 

compaction. Replacement of GGBFS in the fresh concrete will reduce the setting time since the 

calcium content increases along with the replacement percentage of GGBFS. Higher GGBFS will 

induce a shorter setting time which is not preferable during casting and compacting. Thus, 20% is 

considered as an optimum replacement percentage for the GPC casting and thus induce a higher 

mechanical performance for structural applications [1]. 

3.4. Splitting Tensile Test 

Splitting tensile strength results in Table 4 indicates that the performance of GPC is comparable with 

conventional concrete, where they are strong in compression but not in tension [2]. Table 4 and Figure 

7 display the details and graph of the relationship of splitting tensile strength with GGBFS for all ages, 

respectively. For the current study, the increment of splitting tensile strength is very slight compared 

to the studies performed by Jawahar and Mounika. This may be attributed to the higher GGBFS 

replacement in the study conducted by them compared to the current study and also mishandling 

during casting that leads to such behavior. Besides, the database for S50, S75 and S100 for seven days 

and 14 days are not provided, making it difficult for further analysis [5].  

 

Table 4. Splitting tensile strength for the GPC mix 

Mechanical 

property 

Age 

(days) 

Mix type 

C-TF-14-

S0 

(Current 

study) 

C-TF-14-

S10 

(Current 

study) 

C-TF-14-

S20 

(Current 

study) 

S50 [5] S75 [5] S100 [5] 

Splitting 

tensile 

strength, fct 

(MPa) 

7 2.11 2.31 2.54 - - - 

14 2.09 2.56 2.68 - - - 

28 2.08 2.65 2.77 3.25 3.39 3.54 

        

 

Figure 7: Effect of GGBFS percentage on splitting tensile strength 
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Based on Table 4, the application of 10 % and 20 % GGBFS in concrete for current study achieved 

21.51 % and 24.91 % increment of splitting tensile strength compared to the control concrete, 

respectively. However, the strength of control concrete is decreasing along the ages for about 1.42 %, 

may be attributed to lesser compaction and mishandling during casting that leads to such behaviour. 

The strength of 10 %, and 20 % GGBFS replacement in fresh concrete, however, cannot surpass 3.0 

MPa for splitting tensile strength like previous studies. There is 21.75 % higher in maximum splitting 

tensile strength by Jawahar and Mounika for 100 % replacement of GGBFS compared to the 

maximum strength achieved in the current study for 20 %. Nonetheless, the replacement percentage is 

capable of achieving splitting tensile strength as high as that conventional concrete for structural 

application [5]. The increase in GGBFS replacement level improves the microstructure of GPC, thus 

leads to enhancement of splitting tensile strength of GPC. From the results it is observed that GGBFS 

and fly ash blended GPC concretes attained enhanced mechanical properties after cured as in the case 

of only fly ash based GPC concrete but with more significant results [20,21] attributed to the strong 

bonding of geopolymer paste and aggregates that tends to increase the properties of GPC [5]. Still, the 

optimum percentage of GGBFS in concrete to be used as fly ash replacement is 20 % considering the 

workability as mentioned in the previous section. 

4. Conclusion 
Based on the investigations, GGBFS has the potential to be utilized in the construction industry. It is 

one of the ways in mitigating environmental issues, including carbon footprint and cost-saving as well. 

GGBFS also found to be suitable as partial replacement of cement in concrete production, especially 

in fly ash-based GPC. Most of the researchers suggested up to 50 % replacement of either GGBFS as 

cement or fly ash-based GPC replacement in the concrete production [5]. However, to achieve a 

comparable strength with OPC concrete for bond assessment of GPC, GGBFS replacement up to 20 % 

is adequate for such application. Some researchers suggested that replacement up to 50 % is 

recommended but the setting time should be carefully controlled [17]. It is also suggested to use water 

retarders to prolong the setting time before concrete casting, but still, there will be some defect on the 

mechanical properties [11]. Although the application of geopolymer in practical construction has 

already begun in some parts of the world, it will take time to understand the material and its 

technology and make it accepted worldwide [7,16]. For future works in sustainability enhancement, 

carbon footprint produced from oven curing could be eliminated as the addition of GGBFS can 

accelerate the hardening time of the fresh concrete of GPC. Besides, the bond assessment 

recommended being performed as it is crucial in determining bond behaviour and material properties 

of the GPC to be utilized in structural applications.  

5. References 

[1] Barnard R 2014 Mechanical properties of fly ash/slag based geopolymer concrete with the 

addition of macro fibres Masters Thesis Stellenbosch University. 

[2] Turner L K and Collins F G 2013 Carbon dioxide equivalent (CO2-e) emissions: A comparison 

between geopolymer and OPC cement concrete Const. Build. Mater. 43 125–130. 

[3] Abdullah M M, Tahir M F, Tajudin M A, Ekaputri J J, Bayuaji R, Khatim N A 2017 Study on 

The Geopolymer Concrete Properties Reinforced with Hooked Steel Fiber IOP Conf. Series: 

Mater. Sci. Eng. 267 012014. 

[4] Islam M M U, Alengaram U J, Jumaat M Z and Bashar I I 2014 The development of 

compressive strength of ground granulated blast furnace slag-palm oil fuel ash-fly ash based 

geopolymer mortar. Mater. Des. 56 833–841. 

[5] Jawahar J G and Mounika G 2016 Strength properties of fly ash and GGBS based geopolymer 

concrete Asian J. Civ. Eng. (BHRC) 17 127–135. 

[6] Kumar S, Kumar R and Mehrotra S P 2010 Influence of granulated blast furnace slag on the 

reaction, structure and properties of fly ash based geopolymer J. Mater. Sci. 45 607–615. 

[7] Palomo A, Krivenko P, Garcia-Lodeiro I, Kavalerova E, Maltseva O and Fernández-Jiménez A. 

2014 A review on alkaline activation: new analytical perspectives. Mater. Const. 64 022. 



NCWE & ISSCE 2019

IOP Conf. Series: Materials Science and Engineering 712 (2020) 012002

IOP Publishing

doi:10.1088/1757-899X/712/1/012002

8

 
 
 
 
 
 

[8] Krypton Marketing (2014). Sustainable Concrete Building - Supplementary Cementitious 

Materials. blog.kryton.com/2014/09/supplementary-cementitious-materials/. 

[9] Chang E H, Sarker P, Lloyd N, Rangan B V 2009 Bond behaviour of reinforced fly ash-based 

geopolymer concrete beams Proceedings of the 24th Biennial Conference of the Concrete 

Institute Australia Concrete Institute of Australia.  

[10] Mo K H, Yeap K W, Alengaram U J, Jumaat M Z and Bashar I I 2018 Bond strength evaluation 

of palm oil fuel ash-based geopolymer normal weight and lightweight concretes with steel 

reinforcement J. Adh. Sci. Tech. 32 19–35. 

[11] Siddique R and Kaur D 2012 Properties of concrete containing ground granulated blast furnace 

slag (GGBFS) at elevated temperatures J. Adv. Res. 3 45–51. 

[12] ASTM C 2012 C618-12a Standard specification for coal fly ash and raw or calcined natural 

pozzolan for use in concrete. 

[13] BS EN 12390-4 2000 British standard for testing hardened concrete–Part 4: Compression 

strength-Specification of test machines.  

[14] BS EN 12390-6 2002. Testing Hardened Concrete. Tensile Splitting Strength of Test 

Specimens. British Standard Institution, London. 

[15] Sofi M, Van Deventer J S J, Mendis P A and Lukey G C 2007 Bond performance of reinforcing 

bars in inorganic polymer concrete (IPC) J. Mater. Sci. 42 3107–3116. 

[16] Shah A 2017 Optimum Utilization of GGBS in Fly Ash Based Geopolymer Concrete Kalpa 

Pub. Civ. Eng. 1 431–440. 

[17] Xie J, Wang J, Rao R, Wang C and Fang C 2019 Effects of combined usage of GGBS and fly 

ash on workability and mechanical properties of alkali activated geopolymer concrete with 

recycled aggregate. Comp. B: Eng. 164 179–190. 

[18] Gupta S and Chandrakar G 2017 Experimental Studies on Fly Ash Based Geopolymer Concrete 

without Portland Cement-An Eco Friendly Construction Int. J. Eng. Sc. Comp. 7 11514–11520. 

[19] Al-Azzawi M, Yu T, Hadi M N 2018 Factors affecting the bond strength between the fly ash-

based geopolymer concrete and steel reinforcement Structures 14 262–272. 

[20] Siddiqui  K S 2007  Strength  and  Durability  of  Low-Calcium  Fly  Ash-based  Geopolymer 

Concrete, Final Year Honours Dissertation, The University of Western Australia, Perth. 

[21] Sreenivasulu  C,  Ramakrishnaiah  A and  Guru  Jawahar  J 2015  Mechanical  Properties  of 

Geopolymer Concrete Using Granite Slurry as Sand Replacement Int. J. Adv. Eng.Tech. 83–91. 

Acknowledgement 

This work was financially supported by the Universiti Teknologi Malaysia GUP Tier 1 [grant no: 

Q.K130000.2540.20H40]. 

 




