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Abstract. This paper presents the performance analysis of two random sampling algorithms, 
the inverse-transform method and the Vose aliasing method, on GNU Octave. The Monte 
Carlo code MCS developed by UNIST uses random sampling methods to simulate the physics 
of neutron and photon transport [1]. The goal is to optimize the sampling time of MCS for 
cases when the probability density function is a constant function throughout the simulation. 
For this purpose, the runtime of the inverse-transform method and Vose aliasing method are 
compared for increasing input size with scripts developed on GNU Octave. To compare the 
execution time, the initialization and generation time of both methods are determined and 
discussed. 

1.  Introduction 
The random sampling of physical parameters modelled as random variables is an essential component 
of Monte Carlo simulations [4]. Monte Carlo simulations are able to simulate problems that are 
stochastic (probabilistic) by nature, such as the transport of neutrons and photons in matter [6]. 
Random variables can be characterized by so-called probability distribution functions (PDFs) and 
there are several algorithms available in the literature to perform random sampling from a PDF. The 
runtime of algorithms can become the major bottleneck that limit the performances of computer 
simulation and selecting faster algorithms is therefore key for efficient simulations yielding results in 
reasonable times [3]. In this paper, an analysis of the runtime of two random sampling algorithms for 
discrete distributions, the inverse-transform method and the Vose aliasing method, is conducted. Both 
methods are implemented in the mathematical freeware GNU Octave [2] and the initialization time 
and generation times of the two methods is compared and discussed. 

The paper is organized as follows. In section 2, the theory of random sampling, the inverse-
transform method (IVM) and the Vose aliasing method (VAM) are introduced. The runtime 
comparison results are analysed and discussed in section 3 and conclusions are drawn out in section 4. 
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2.  Random sampling for discrete distribution 
Random sampling are techniques to generate random values of a variable x distributed in the interval 
(xmin; xmax) according to a given PDF, p(x) [4]. In discrete distributions, the PDF p(x) is quantized: this 
case corresponds for instance to throwing a dice or tossing a coin. Technical vocabulary associated to 
discrete distributions and probability terms are defined in g over the simulated histories. 
 
Table 1. From a discrete PDF, a discrete cumulative distribution function (CDF) or a probability-alias 
table can be generated. This CDF / this probability-alias table can be used in conjunction with a 
random number generator (RNG) to sample random variables according to the initial PDF. The RNG 
commonly samples number uniformly in the interval (0;1). An illustration of the random sampling 
process is shown in Figure 1. If the number of generated random variables is large enough, 
quantitative information on the process being simulated (dice, neutron transport process, etc.) may be 
obtained by simply averaging over the simulated histories. 
 

Table 1. Probability terms used for discrete distributions. 

Terms Notation Definition/description 
Random variable x Variable whose value is determine by chance 
Sample space N Total number of possible x-values 
Probability 
distribution 
functions, PDF 

PDF(x) = n/N Function which allocates probabilities for certain 
event to occur where: 
� n = number of values of x that fall within interval  

(xmin ≤ x ≤ xmax) 
� N = sample space 

Cumulative 
distribution function, 
CDF 

CDF(x) = ∑ �(�)�
���  � Shows cumulative summation of PDF for each x-

value 
� Sum of all CDF equals 1 
� CDF is non decreasing function 

Random number 
generator, rand 

Rand = ξ  rand is an Octave keyword to generates a random 
number, ξ uniformly between 0 and 1. (0 ≤ ξ < 1). 

  

 

Figure 1. Random sampling for discrete distributions. 

2.1 Inverse-transform method (IVM) 
Inverse transform method is the conventional algorithm used in random sampling. This practical 
method is useful for generating random values of x using a generator of random numbers uniformly 
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distributed in (0,1). It exploits the fact that the CDF, because it is the cumulative summation of PDF 
for each x-value, is a non-decreasing function that can be inversed.  

 
(a)                                                                          (b) 

Figure 2. (a) Example of PDF and, (b) CDF for sampling with the inverse-transform method. 
 

The output of the uniform RNG 0 < ξ <1 is related to CDF by Equation 1 and Equation 2 consists 
in inversing the CDF (hence the name inverse-transformation method). The random variable, x can 
therefore be sampled according to Equation 2. The sampling process is illustrated in                          
(b) 

Figure 2 [4]. The initiation phase of IVM consists in creating a CDF by summing up the PDF 
cumulatively. The generation phase of IVM consists in solving Equation 2 for a random number ξ 
sampled uniformly in (0,1) to determine the random variable, x. 
 

ξ = CDF(x)      (1) 
 

CDF(ξ)-1 = x     (2) 
 
2.2 Vose aliasing method (VAM) 
The Vose aliasing method is another approach to generate a random variable from a RNG outputting 
numbers uniformly between 0 and 1. The VAM relies on the use of a so-called probability-alias table 
instead of a CDF. The initialization phase of VAM consists in generating the probability-alias table 
from the specified PDF. In the probability-alias table, the row prob stores the probability within the 
column that the original PDF will be chosen whereas the row alias stores the index of the cut PDF (if 
any) [5]. This index acts as a pointer referring to the original PDF (hence the name alias). The table is 
characterized by a length of N and the height is 1 (100% probability) as displayed in Figure 3.  

 
(a)                            (b)  
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Figure 3. (a) Example of PDF and (b) prob.-alias table for sampling with the Vose aliasing method. 

 

In the generation phase, a random number, ξ1 is generated by the RNG to select a column of the 
probability-alias table uniformly at random. The select column is called column i. Next, another 

random number, ξ2 is generated by the RNG. If ξ2 ≤ prob[i], the random variable, x in prob[i] is 

returned, else the random variable, x in alias[i] is returned. In this process, 2 random numbers from 
the RNG are required to sample a single random variable. A trick can be used to only one random 

number instead of two: it is indeed possible to replace ξ2 by ξ1. N – floor (ξ1. N) and still obtain a fair 

sampling of the random variable. 

 
3.  Results 
The data collected from the validation test is summarized in Table 2 and illustrated in Figure 4. The 

difference between the normalized PDF, the IVM frequency and VAM frequency is very small, thus 
showing that both IVM and VAM methods were properly implemented in GNU Octave and are valid 

for further random sampling usage. 

 

Table 2. Validation test. 

Dice 
value 

Normalized 
PDF 

1 million samples in total 

IVM count 
IVM 

frequency 
VAM count 

VAM 

frequency 

1 1/16 = 0.0625 6.26 x 104 0.0626 6.23 x 104 0.0623 
2 1/16 = 0.0625 6.23 x 104 0.0623 6.24 x 104 0.0624 

3 2/16 = 0.125 1. 24 x 105 0.124 1.25 x 105 0.125 

4 3/16 = 0.1875 1.87 x 105 0.187 1.87 x 105 0.187 
5 4/16 = 0.25 2.49 x 105 0.249 2.50 x 105 0.25 

6 5/16 = 0.3125 3.12 x 105 0.312 3.12 x 105 0.312 

 
 

 

Figure 4. Validation test of implementation of random sampling methods. 
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The runtime data to generate one million samples from increasing PDF size is tabulated in Table 3. 

Figure 5 depicts the initialization time as a function of the PDF size. For both methods, the 

initialization time increases linearly as the PDF size increases. However, the slope for VAM is much 
steeper than for IVM due to a more complex initialization phase. Notice that the initialization time of 

both methods (runtime of one initialization phase) is very small compared with the generation time of 

one million samples, which makes it not significant to the total runtime. 
 

Table 3. Runtimes of sampling methods for increasing PDF size. 

 
PDF size, N 

20 40 60 80 100 

Initialization 

time [s] 

IVM 9.6 x 10-5 2.8 x 10-5 3.2 x 10-5 6.2 x 10-5 1.3 x 10-4 

VAM 2.5 x 10-3 3.2 x 10-3 4.9 x 10-3 8.8 x 10-3 8.5 x 10-3 

Generation 

time [s] 

IVM 209.5 348.0 478.3 616.7 746.6 

VAM 64.0 65.7 63.5 65.0 64.9 

 

 

Figure 5. Initialization time [s] versus PDF size, N. 

 

 

Figure 6. Generation time [s] versus PDF size, N. 
 

In Figure 6, a proportional increase of the generation time as a function of the PDF size is 

observed. This relationship occurs because in the generation phase of IVM, a sequential search of the 

CDF is performed to output a sample, whose runtime increases linearly with the PDF size. Meanwhile, 
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VAM shows an almost constant generation time close to ± 64.5s regardless of the PDF size. This 

speed advantage is due to the smart data structure of the prob.-alias tables. Therefore, as long as the 

initialization phase is only performed once, this analysis shows that the VAM has a better runtime 
performance than the IVM. 

 

4.  Conclusions 
The IVM and VAM have been implemented in GNU Octave and the complexity analysis of both 
algorithms have been performed. VAM is shown to have a better generation runtime performance 
compared to IVM but a worse initialization runtime. For random variables with constant PDFs, the 
initialization is only called once: VAM is therefore a good alternative to IVM to optimize the sampling 
time of random variables characterized by constant PDF. An example of constant PDFs can be for 
instance the electron shell transition probabilities in Monte Carlo codes simulating the transport of 
photons and the creation of fluorescence photons through atomic relaxation processes. Implementing 
the VAM instead of IVM for such a case will result in a more complex initialization phase and coding 
but a net gain of computing time. VAM instead of IVM may be used in other circumstances as well as 
long as the PDF governing the random variables is constant and the initialization phase is only called 
once.  
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