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Abstract. Undoubtedly, early detection and characterization of brain tumor is critical in clinical practices. Automated 
diagnosis using neuroimaging tool like MRI guided by machine learning approaches has been the focus of numerous 
researches. In this study, various feature extraction, dimensionality reduction and supervised classification models are 
explored, evaluated and compared under different finite number of features to identify the optimal pathway/pipeline for 
classification of types of brain tumor, namely meningioma, glioma and pituitary tumor. The performance metrics utilized 
include accuracy, Kappa statistic, sensitivity, precision, F-measure, training time and test time. Results show that RBF 
SVM (pairwise coupling) under 80 PLS features achieved the highest average accuracy among all 
other machine learning pipelines. 

INTRODUCTION 

Brain tumor, particularly malignant tumor is life threatening. According to latest statistics from [1], 5 years survival 
rate of patients diagnosed with malignant brain tumor and other central nervous system (CNS) is roughly 34% for 
men and 36% for women. In view of this, early detection and characterization of brain tumor is of paramount 
importance to conduct more accurate diagnosis, prognosis, treatment planning and prediction of therapeutic responses 
from patients. 

With rapid advances in biomedical imaging technologies, vast amount of high resolution medical images, such as 
contrast enhanced magnetic resonance (MR) scan images [2] is nowadays a vital tool for studying human brain 
anatomy and disease detection, e.g. brain tumor detection, Alzheimer’s disease, multiple sclerosis and other 
neurological disorders. Lately, there has been a surge in interest in the study in automated and semi-automated 
characterization of brain tumor with the aid of MR images, in conjunction with the rapid development of computer 
vision and machine learning algorithms. Besides offering high resolution multi-modality images, MRI scan also does 
not emit hazardous emission. Due to its superior soft tissue differentiation, MR images can provide useful semantic 
information on the types of tumor, and ultimately assist clinical experts and radiologists to make unbiased diagnosis. 

In this study, we will be focusing on the brain tumor type classification problems, namely meningioma, glioma 
and pituitary tumor, in which meningioma (37%), glioma (27%) are two of the most common brain tumor, while 
pituitary tumor accounted for around 16% of all primary brain tumor. Previously, Zacharaki et. al [3] attempted the 
multiclass classification of different brain tumor grades, e.g. glioma grade II, glioma grade III, glioblastoma and 
metastasis using one versus all SVM voting scheme. In the work of [4], classification of multiple brain tumor types: 
astrocytoma, glioblastoma multiforme, childhood tumor-medulloblastoma, meningioma, secondary tumor metastatic, 
and normal regions were conducted. It was found that PCA-ANN achieved the highest overall accuracy of 85.23%. 
Multiple brain tumor types and grades classification using SVM had been proposed by [5]. An accuracy of 85% and 
78.26% were achieved respectively when second order features was utilized. Jayachandran et. al [6] conducted multi 
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class brain tumor classification using hybrid structure descriptor and fuzzy logic based pair of RBF kernel SVM. . 
Classification accuracy of proposed system in meningioma is 98.6%, metastasis is 99.29%, gliomas grade II is 97.87% 
and gliomas grade III is 98.6%. 

This task is more challenging compared to binary classification problem of normal and neoplastic brain MR images 
because it is a multiclass classification problem, in which some binary classifiers like logistic regression and support 
vector machine (SVM) cannot be readily implemented. In addition, instead of using whole images, the ambiguous 
tumor regions have to be identified and isolated by either human experts or image segmentation algorithm before 
feature extraction and subsequent classification can be carried out. A wide ranges of feature extraction, feature 
transform and reduction as well as pattern recognition algorithms will be experimented and their performances will 
be evaluated and compared in terms of accuracy, Kappa statistic, sensitivity, precision, F-measure, training time and 
test time. With extensive experimentation and its results interpretation, the best pathway for the development of 
automated computer aided diagnosis (CAD) can be identified. 

 

MATERIALS AND METHODS 

The overall pipeline of the research framework is outlined in Fig. 1. 

 
FIGURE 1. Brain tumor types classification framework. 

Data acquisition 

The brain MR images are downloaded from publicly available online database. A total of 3064 slices of T1-
weighted contrast enhanced MR images from 233 patients was downloaded from 
https://figshare.com/articles/brain_tumor_dataset/1512427. There are three kinds of brain tumor in the MR images 
downloaded, namely meningioma (708 slices), glioma (1426 slices), and pituitary tumor (930 slices). The brain T1-
weighed CE-MRI dataset was acquired from Nanfang Hospital, Guangzhou, China, and General Hospital, Tianjing 
Medical University, China, from year 2005 to 2010. The images have an in-plane resolution of 512×512 with pixel 
size 0.49×0.49 . The slice thickness is 6 mm and the slice gap is 1 mm [7, 8]. 

 

Tumor region augmentation 

The 2D brain MR images comes with ground truth tumor region delineated manually by experienced radiologists. 
As pointed out in [9], tissues surrounding tumors can provide useful discriminative information about the types of 
tumor. Thus, augmentation of tumor region can be beneficial in extracting robust features. In this study, augmentation 
of tumor region is performed by morphological dilation with disk-shape structuring element with radius, R of 8. 
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Feature extraction 

Simply speaking, feature extraction is a dimensionality reduction method, in which instead of utilizing pixels 
intensity in raw images, a set of attributes, also known as feature vector is constructed to represent a certain image. 
This stage is crucial as it can directly impacts the generalization performance of classification models [10]. Ideal set 
of feature should be relevant, non-redundant, provide low dimensional representation for visualization, and increase 
training and inference speed of learning algorithms [11]. In this paper, several feature extraction techniques are 
employed, including shape parameters, geometric moment invariants [12, 13], Zernike moments [14, 15], pseudo 
Zernike moments [16], histogram of oriented gradients (HOG) [17], linear binary pattern (LBP) [18], and bag of words 
(BOW) model [19]. It is worth noting that the image features will be extracted from the augmented tumor region. The 
number of features extracted from each methods are summarized in Table 1. Therefore, the whole feature matrix 
dimension is . This feature matrix will be linearly projected to new dimensional subspace. We spotted 
some predictors possess the same values throughout the data. As such, prior to feature selection methods, these non-
discriminative features are removed. 

 
Table 1. Feature extraction and its number of features. 

Feature extraction methods Number of features 
Binary shape parameters 11 
Geometric moment invariants 7 
Zernike moments 12 
Pseudo Zernike moments 15 
HOG 900 
LBP 266 
Bag of words model  500 

 

Binary shape parameters 

Shape is definitely an important cue for human to identify and recognize the real world objects [20]. Shape features 
can be divided into 2 categories: contour based and region based method. Contour based method will be our focus 
because of low computation complexity and the shape descriptors are generally intuitive. These descriptors can only 
discriminate shapes with big differences, and thus has to be combined with other features for downstream classification 
tasks [21]. These shape attributes only requires binary image, in which the labeled tumor region has a value of ‘1’ and 
‘0’ otherwise. Table 2 shows the list of shape parameters and their respective formula and details. 

 
Table 2. List of binary shape parameters and its corresponding formula. x and y denote the indices of row and 

column of an image. I(x,y) denotes the binary image pixels. 
Shape 
parameters Formula Details 

Area 
1 1

( , )
height width

x y
A I x y

 

Size of tumor. 

Center of 
area 

1 1

1 1

1 . ( , )

1 . ( , )

height width

x y

height width

x y

x x I x y
A

y y I x y
A

 

Row and 
column 
coordinates of 
the center of 
tumor. 

Axis of least 
second 
moment 

1 11
2 2

1 1 1 1

2 ,1 tan
2 , ,

height width

x y
height width height width

x y x y

x x y y I x y

x x I x y y y I x y
 

Orientation of 
tumor 

Perimeter Counting the 
number of ‘1’ 
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4iP Perimeter
 

pixels with ‘0’ 
pixels as 
neighbor. 
Apply Canny 
edge detector 
to obtain 
tumor border. 

Thinness 
ratio 24

i

AT
P

 

Measure of 
roundness 

Irregularity 
ratio 

1IR
T  

Regularity of 
an object. 

Aspect ratio 
1
1

max min

max min

y yAR
x x  

Relative 
object spread 
in both 
vertical and 
horizontal 
directions. 

 

Geometric moment invariants 

Geometric moment invariants (GMI), also known as Hu’s moment invariants was initially discovered by Hu [22], 
and had since being widely employed in various applications [23]. The most desirable properties of GMI is translation, 
scaling and rotation invariance, which is imperative in content based image retrieval as well as pattern recognition and 
object detection in images. However, it should be noted that the basis function of GMI is not orthogonal that may lead 
to information redundancy. Before the formula of seven Hu’s moment invariants is introduced, the discrete 
implementation of  order moments, central moment and normalized central moment are defined as below: 

 

 

(1) 

 (2) 

 
 
Where   is the binary tumor region, ,   

 (3) 

 
 
 
 Based on the normalized central moments, , seven GMI are defined as follow: 

 (4) 
 (5) 

 (6) 
 (7) 

 
 (8) 

 (9) 
 (10) 
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Zernike moment (ZM) & pseudo Zernike moment (PZM) 

Zernike moment initiated by the work of Teague [24] is another moment techniques with the use of Zernike 
polynomials as basis function for the moment calculation. Unlike GMI, Zernike polynomial used is orthogonal, which 
can reduce information between moments. There are several properties of ZM that make it a very effective global 
image descriptors, including rotational invariance, ease of image reconstruction from ZM [25], tolerance to noise, 
expression efficiency and multi-level representation [26]. The conventional way of calculating Zernike moments 
suffer from discretization errors as pointed out by [27], thus accurate calculation of ZM through geometric moments 
is applied in this research. Zernike moments can be defined in terms of geometric moments according to [23]: 

 

 

(11) 

 
Where ;  when  while  when  

 

 

(12) 

 

 

(13) 

 
Where  

 
 

(14) 

 
 
 Similar to ZM, pseudo Zernike moment (PZM) also belongs to the class of orthogonal moment. However, 

PZM can produce twice the number of moments in comparison to ZM provided the same moment order [16]. In this 
paper, fast calculation of PZM using q recursive method will be employed [28]. 

 

 HOG 

HOG proposed by [17] is a local feature descriptor that is able to capture edge gradient structure with high tolerance 
to local geometric and photometric (illumination) transformation [29] and simultaneously maintain high selectivity 
[30]. These features is well known for preserving local second-order interaction between pixels [31]. In this research, 
we first resize the augmented tumor images to be  before applying Sobel filter kernel on to get the gradients. 
Histogram of gradient are calculated in each  cells and normalized with  blocks. 

 

 LBP 

Ojala et. al [18] introduced a grayscale and rotation invariant feature, known as local binary pattern (LBP). LBP 
is a simple yet efficient operator in depicting local image pattern and has been utilized as features for various 

080001-5



application [32].Aside from the implementation of original LBP, an improved version of locally rotation invariant 
LBP [33] is applied for better tradeoff between discriminative power and robustness. 

 

 Bag of words (BOW) model 

BOW techniques was originally introduced in text document analysis and retrieval and had extended its application 
in feature extraction in computer vision domain [34]. Prior to BOW, a set of local descriptors have to be defined for 
each images. In this paper, local image patches of size  is used. In BOW model, there are two main steps in 
converting local descriptors into image representation: coding and pooling [35]. Coding can be defined as an operation 
whereby local descriptors are encoded by codebook or vocabulary and the response of feature on this codebook is 
generated either through probability function or sparse coding [36]. On the other hand, pooling is the process of 
transforming feature response into image representation that preserves vital information.[37]. Sparse coding and max 
pooling was chosen as the former can mitigate quantization loss of vector quantization algorithm, which lead to better 
class discrimination, whereas the latter reconstructs more discriminative local features, unlike average pooling which 
might be affected by noisy local features [36]. 

 

Feature reduction 

Since the feature data is of high dimensionality and thus can incur high computational cost, dimensionality 
reduction is necessary to remove irrelevant features. The main goal of feature reduction is to prevent overfitting [38], 
a condition where the learning models do not generalize well to unseen data (not part of the training dataset) by 
removing noisy and redundant features. In order to reduce the number of features, we employ feature transform 
methods (e.g. Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), Partial Least Square (PLS), 
and Independent Component Analysis (ICA)) and feature selection methods (e.g, Relieff algorithm [39], 
Discriminative Least Square Regression (DLSR) [40], and LW-index [41]. 

 

 Classification models 

Classification models attempt to derive relationship between the set of input variables (normally in the form of 
input vector) and its corresponding categorical target/label. In this research, the classifiers are going to deal with multi-
class classification problem (identify and detect different types of brain tumor (e.g. meningioma, glioma and pituitary 
tumor)). The classifiers employed in this study are, Naïve-Bayes (NB) classifier, kNN classifier, weighted kNN [42], 
artificial neural network (ANN), support vector machines (SVM), and extreme learning machine (ELM) [43]. Table 
3 presents the implementation of the classification algorithms mentioned above.  

 
. Table 3. Implementation details of various classifiers 

Classification models Implementation details 
kNN 10-fold cross validation is used to determine optimum parameter, k 

(number of nearest neighbors) in the range from 1 to 100. Euclidean 
distance measures is used. 

Weighted kNN Inversion kernel function is to calculate the weights of nearest neighbors. 
NB Gaussian probability distribution function is used to quantify the class 

conditional probability of each features. 
ANN Double layer hidden nodes: first one consists of 100 hidden neurons, while 

second one consists of 50 hidden neurons. Learning algorithm: batch 
gradient descent. Activation function: hyperbolic tangent. 

SVM Two SVMs: linear and RBF. RBF SVM is applied because it is capable of 
learning non-linear decision boundary. The sigma and C parameters in RBF 
SVM are optimized by grid search method[44]. Three classification 
schemes under one versus one SVM model will be explored: majority 
voting, directed acyclic graph (DAG)[45], and pairwise coupling [46]. One 
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versus one SVM is chosen because of its superior performance reported in 
[47]. 

ELM 500 hidden nodes is used throughout the experiment. Optimum C 
parameters is found using 10-fold cross-validation method in the range of  
{ }[48]. 

 

 Performance evaluation and analysis 

In order to evaluate the performance of each machine learning approaches applied, 7 commonly accepted 
performance measures are utilized, including test accuracy (%), Kappa statistic, sensitivity (%), precision (%), F-
measure (%), training time (s) and test time (s). Since different schemes of feature reduction and classifiers will be 
experimented for 30 times using different sets of training data, the mean and standard deviation of performance metrics 
can be computed for unbiased analysis and comparison among methods employed. Some notations are shown in Table 
4 before the performance measures together with its formula and definitions are displayed in Table 5. 

 
Table 4. Notations in performance measures formula 

Notations Definitions 
TP The number of true positives (tumorous images correctly categorized). 
FP The number of false positives (tumorous images incorrectly categorized). 
TN The number of true negatives (normal images correctly categorized). 
FN The number of false negatives (normal images incorrectly categorized). 
P(A) The relative observed agreement among raters. 
P(E) The hypothetical probability of chance agreement. 

 
Table 5. Performance measures and its definitions 

Performance 
measures 

Formula Definition 

Accuracy TPAcc
TP FP TN FN  

Overall efficiency and 
generalizability of classifier [49]. 
However, its use in performance 
comparison among classifiers is limited 
[50]. 

Kappa statistic ( ) ( )
1 ( )

P A P EKappa
P E  

Measure the degree of agreement 
between the predicted labels and the 
ground truth [51]. 

Sensitivity TPSensitivity
TP FN  

Compute the proportion of samples of 
class ‘A’ label that are correctly 
predicted as class ‘A’ in the test phase. 

Precision TPprecision
TP FP  

Indicate the proportion of test 
samples that are predicted to be class ‘A’ 
that match the known true class label. 

F-measure/F-
score 

2
2

TPF score
TP FP FN  

Harmonic mean of precision and 
sensitivity. 

Training time - Quantify the convergence speed of 
training. 

Test time - The rate at which the output labels of 
test samples are generated. 
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RESULTS AND DISCUSSIONS 

Construction of different feature sets and experiments involved 

Different types of feature reduction and classification algorithms will then be applied. For feature transform method, 
3, 5, 10, 20 and 50 features will be experimented. Each experiment will be conducted 30 times using stratified 
sampling strategy for unbiased statistical analysis. Fig. 2 shows the schematic diagram of the processed involved. In 
every machine learning trials, the dataset are split into 60% training data and 40% test data. In the later discussion, 
number of features is abbreviated as n.o.f. 

 
Figure 2. Flow of experiments conducted. 

Performance evaluation 

There are 2 types of dimensionality reduction techniques used in this study: 1) feature transform (in most literature, it 
is called feature extraction); 2) feature selection. Feature transform refers to PCA, PLS, LDA and ICA while feature 
selection denotes Relieff, DLSR and SFS-LW. We different groups of finite number of features (n.o.f) for these 2 
types of dimensionality reduction: 10,20,30,40,50,60,70 and 80 features (feature transform); 50,100,150,200,250,300 
features (feature selection). Thus, it is unreasonable to compare these 2 methods, but comparative study can be 
conducted in between methods in each dimensionality reduction techniques. 
 

Performances of classifiers under PLS scheme 

Based on Fig. 3, RBF SVM with pairwise coupling is the classifiers with the highest average accuracy (95.02%) and 
Kappa statistics (0.922) when n.o.f is 80. However, statistically significant difference of accuracy cannot be 
established in between all the RBF SVM and linear SVM (pairwise coupling) under n.o.f=80 as there is overlap in 
confidence interval (CI). Empirical observation on Fig. 3 also reveals that not all classification models’ accuracy 
increases with inclusion of more features. kNN, weighted kNN and ANN are a few classifiers that achieves their 
highest accuracy when n.o.f=30, but performances deteriorate with inclusion of more features. This shows that these 
classifiers are sensitive to noises. The accuracy achieved by both linear and RBF SVM are similar, with pairwise 

Performed 30 
times for 
each schemes 
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coupling performs slightly better than other methods. The sensitivity, precision and F-score of class A (meningioma) 
are generally lower than class B (glioma) and class C (pituitary tumor). This may be due to lower prior probability 
(number of samples) of class A during training phase. 
 

Performances of classifiers under PCA scheme 

Based on Fig. 4, RBF SVM (majority voting scheme) recorded the highest average accuracy (85.68%) and Kappa 
statistic (0.774) when n.o.f is 70. It should be noted here that we cannot rule out the accuracy of RBF SVM under 60 
to 80 PCA features is similar due to overlap in CI. It is obviously shown in Fig. 4 that the accuracy of RBF SVM is 
higher than other classifiers by fairly large margin in all n.o.f settings. Interestingly, the accuracy of ANN plunges 
with the increase in n.o.f, which probably caused by overfitting issue. Similar to PLS, the sensitivity, precision and F-
score of class A (meningioma) are generally lower than class B (glioma) and class C (pituitary tumor), and these 
performance measures of class A come with lower value compared to PLS. This shows that more samples of 
meningioma has been misclassified as glioma and pituitary tumor. 
 

Performances of classifiers under LDA scheme 

According to Fig. 5, RBF SVM with pairwise coupling achieved the highest average accuracy (87.48%) and Kappa 
statistic (0.803) when n.o.f is 80. There is no significant difference among linear SVM and RBF SVM under 70 and 
80 LDA features. SVM is clearly better classifiers with significantly higher accuracy than other classifiers based upon 
empirical observation on Fig. 5. NB classifiers recorded average accuracy of 23.1% when n.o.f is 40, which in other 
words predicts all test samples as class A (meningioma). 
 

Performances of classifiers under ICA scheme 

According to Fig. 6, linear SVM (DAG scheme) recorded the highest accuracy and Kappa statistic of 47.07% and 
0.0126 respectively. The accuracy of classification models with ICA feature as input are lower compared to the 
aforementioned feature transform approach. This is primarily due to the prediction of majority of test samples as class 
B (glioma). In other words, ICA features do not possess useful information in discriminating the tumor types.  
 

Performances of classifiers under all three feature selection schemes 

 Under Relieff, DLSR, SFS-LW, the maximum accuracy is attained by RBF SVM (pairwise coupling): 
89.52%, 89.63% and 86.35% respectively when n.o.f is 300. For all three feature selection methods, RBF SVM is the 
optimal classifiers. If we inspect bars representing RBF SVM in Fig. 7, 8 and 9, there is no statistical difference in 
accuracy for all three variants of one versus one RBF SVM. For these three SVM variants, the average accuracy 
increases with increase in n.o.f (in the case of Relieff); the average accuracy are roughly the same for all n.o.f settings 
(in the case of DLSR); the average accuracy are roughly the same for n.o.f in between 100 until 300 (in the case of 
SFS-LW). The optimal machine learning paradigms under different dimensionality reduction methods are shown in 
Table 6. 
 

It is noted that kNN and weighted kNN have approximately the same accuracy under feature transform 
approaches. However, weighted kNN has higher accuracy compared to kNN under feature selection methods. This 
suggests that feature selection can better preserve distance measures, in contrast to feature transform since weighted 
kNN utilizes the sum of kernel function of nearest neighbors belonging to each class in making class prediction. On 
top of that, the accuracy of ANN decreases as n.o.f increases in all 3 cases, which suggest overfitting. Pairwise 
coupling is better methods in generating models outputs, particularly in linear SVM as shown by higher accuracy and 
Kappa statistic compared to other techniques. It is also noticed that ELM recorded comparable accuracy to linear SVM. 
Interestingly, NB has the worst accuracy (23.1%), in other words predict all test samples as class A (meningioma) 
when SFS-LW feature selection is implemented. The possible explanation is that the feature subsets constructed is 
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either dependent or has minimum mutual information (low entropy feature distribution) as explained in the work of 
[52]. 
 

In a nutshell, these are the findings that can be concluded from this research: 
a) All in all, almost every machine learning paradigms investigated can achieve an average accuracy higher than 85% 
as long as the n.o.f is sufficient, given that the classifier used is SVM. This condition does not apply when ICA features 
are implemented, with accuracy lower than 48% for very combination of n.o.f and classifiers. 
b) The best machine learning pipeline found was RBF SVM (pairwise coupling) + 80 PLS features, which achieves 
an average accuracy of 95.02%, which is the highest accuracy obtained thus far in contrast to other findings in literature. 
c) Generally speaking, ANN performs poorly in all dimensionality reduction scheme. This situation becomes more 
evident as the n.o.f included increases. We suspect that the proposed architecture of ANN is suboptimal and cannot 
acquire semantic information from the features input. NB is the worst performing classifiers, which under certain 
settings of n.o.f and feature selection method only recorded 23.1% in accuracy, indicating that the classifier has lost 
its discriminating power. 
d) Weighted kNN generally performs similarly as compared to kNN in majority of machine learning pipelines, with 
higher test time with the increase in the number of features. 
e) Of the three SVM variants, there is no statistically significant difference in between them when RBF SVM is 
employed as there is overlap in the confidence intervals shown in error bars in the following figures. However, when 
linear SVM is used as classifier, pairwise coupling produces better generalization performance when PLS features and 
feature subsets selected by all the 3 feature selection methods are used. The test time of majority voting is lower 
compared to DAG and pairwise coupling. The difference is around 2 order of magnitude. 
f) The training time can be arranged in ascending order as follow: NB < ELM < linear SVM < RBF SVM < ANN 
when n.o.f is below 200. Otherwise, the training time of linear SVM is lower than ELM.  
g) The superior performance of RBF SVM under PLS scheme is due to the ability to identify meningioma correctly, 
as can be observed in relatively high sensitivity, precision and F-score of class A. 
h) According to Table 7, our proposed machine learning approaches had achieved better accuracy than other proposed 
methods, showing its feasibility in classification of tumor types using T1-weighted contrast enhanced MR images. 

 

 
Figure 3. Classification accuracy of PLS + different classifiers. The error bars are constructed by formula: average 
accuracy  (t(standard deviation))/ n,  where t represents t multiplier for student s t distribution. The value of t 
is 2.0452 (degree of freedom=n-1, probability=0.05). n represents the number of samples. The ranges of accuracy 
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represents 95% of confidence intervals. The highest accuracy is (94.83%,95.21%)  attained by RBF SVM (pairwise 
coupling). 

 

 
Figure 4. Classification accuracy of PCA + different classifiers. 95% confidence interval for the highest accuracy is 

(85.30%,86.07%) attained by RBF SVM (majority voting). 
 

 
Figure 5. Classification accuracy of LDA + different classifiers. 95% confidence interval for the highest accuracy is 

(87.12%,87.83%) attained by RBF SVM (pairwise coupling). 
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Figure 6. Classification accuracy of ICA + different classifiers. 95% confidence interval for the highest accuracy is 

(46.99%,47.15%) attained by linear SVM (DAG). 
 

 
Figure 7. Classification accuracy of Relieff + different classifiers. 95% confidence interval for the highest accuracy 

is (89.28%,89.75%) attained by RBF SVM (pairwise coupling). 
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Figure 8. Classification accuracy of DLSR + different classifiers. 95% confidence interval for the highest accuracy 
is (88.72%,90.54%) attained by RBF SVM (pairwise coupling). 

Figure 9. Classification accuracy of SFS-LW + different classifiers. 95% confidence interval for the highest 
accuracy is (86.02%,86.68%) attained by RBF SVM (pairwise coupling). The accuracy of NB classifier is not 

shown as all the accuracy is 23.01%. 
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Table 7. Comparison with other findings in literature using same dataset and performing the same classification 
tasks. 

Authors Classifiers Feature input Accuracy  
[53] Capsule 

networks 
Downsampled  

raw image patches. 
86.56% 

[7] SVM BoW model with 
region partitioning 

91.28% 

Our work RBF SVM PLS features extracted 
augmented tumor region 

95.02% 

CONCLUSION AND FUTURE WORK 

We had devised and implemented several pattern recognition paradigms under different finite n.o.f in an effort to 
classify multi class brain tumor using T1-weighted contrast enhanced MR images. These studies can be crucial for the 
development of highly demanded automated CAD system. It was found that RBF SVM (pairwise coupling) under 80 
PLS features achieved the highest average accuracy among all other machine learning pipelines. 
Of all the dimensionality reduction strategies, ICA features do not offer useful information in classification of brain 
tumor types as the accuracy is no more than 48%. Other than that, ANN and Naïve Bayes classifiers can suffer from 
overfitting problem in some dimensionality reduction methods if the architecture is inappropriate (ANN) and 
dependence between features exist (NB). 

Future work can potentially orienting towards other non-linear dimensionality reduction methods like Isomap, 
kernel PCA and etc. Classification algorithms like decision tree and fuzzy classification can be employed. Real online 
dataset (it should be noted that the data used in this research does not represent the real proportion of tumor types), 
which has the realistic ratio of tumor types should be considered in future study. 
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