Universiti Teknologi Malaysia Institutional Repository

Inference networks for molecular database similarity searching

UNSPECIFIED (2008) Inference networks for molecular database similarity searching. International Journal of Biometric and Bioinformatics, 2 (1). pp. 1-16. ISSN 1985-2347

Full text not available from this repository.

Official URL: http://www.cscjournals.org/Journals/IJBB/Volume2/I...

Abstract

Molecular similarity searching is a process to find chemical compounds that are similar to a target compound. The concept of molecular similarity play an important role in modern computer aided drug design methods, and has been successfully applied in the optimization of lead series. It is used for chemical database searching and design of combinatorial libraries. In this paper, we explore the possibility and effectiveness of using Inference Bayesian network for similarity searching. The topology of the network represents the dependence relationships between molecular descriptors and molecules as well as the quantitative knowledge of probabilities encoding the strength of these relationships, mined from our compound collection. The retrieve of an active compound to a given target structure is obtained by means of an inference process through a network of dependences. The new approach is tested by its ability to retrieve seven sets of active molecules seeded in the MDDR. Our empirical results suggest that similarity method based on Bayesian networks provide a promising and encouraging alternative to existing similarity searching methods.

Item Type:Article
Uncontrolled Keywords:bayesian networks, molecular similarity searching, chemical databases, inference network, drug discovery
Subjects:Q Science > QA Mathematics > QA75 Electronic computers. Computer science
Divisions:Computer Science and Information System (Formerly known)
ID Code:8947
Deposited By:INVALID USER
Deposited On:09 Jun 2009 09:02
Last Modified:09 Jun 2009 09:02

Repository Staff Only: item control page