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ABSTRACT In the age of industry 4.0, deep learning has attracted increasing interest for various research

applications. In recent years, deep learning models have been extensively implemented in machinery fault

detection and diagnosis (FDD) systems. The deep architecture’s automated feature learning process offers

great potential to solve problems with traditional fault detection and diagnosis (TFDD) systems. TFDD relies

on manual feature selection, which requires prior knowledge of the data and is time intensive. However, the

high performance of deep learning comes with challenges and costs. This paper presents a review of deep

learning challenges related to machinery fault detection and diagnosis systems. The potential for future work

on deep learning implementation in FDD systems is briefly discussed.

INDEX TERMS Deep learning, fault detection and diagnosis, current challenges, future developments.

I. INTRODUCTION

Safety and reliability are key factors in industrial operations.

Rotating machinery is a vital component in many industries,

and it is prone to failure due to harsh working conditions

and long operational times [1], [2]. Examples of rotating

machinery components including gears [3], pumps [4], bear-

ings [5], shafts [6], blades [7], motors [8] and engines [9].

Failures in rotating machinery should be detected as early as

possible to prevent critical damage [10] and sudden halt of

machine operation. Failures may cause delays in operations

and, consequently, tremendous economic loss [11]. For exam-

ple, petrochemical industries lose around 20 billion dollars

per year due to faults in their machine components [12].

According to a report by Duan et al. maintenance accounts

for more than 60% of the total cost of aircraft engine compo-

nents [13]. In the worst case, a machinery component failure

may lead to loss of human life. Elasha et al. discussed a case

The associate editor coordinating the review of this article and approving
it for publication was Kezhi Li.

in which the failure of planet gear in an aircraft caused an

accident that cost 16 people their lives [14].

Fault detection and diagnosis (FDD) is crucial to

preventing unexpected breakdowns of machinery and

ensuring production efficiency and operational safety.

Fault detection and diagnosis systems are categorised

into model-based, data/signal-based and knowledge-based

approaches [15], [16]. In modern industry, signal-based or

data-driven approaches have attracted more attention from

researchers [17] because these approaches provide high diag-

nostic accuracy and do not require empirical estimation of

physical parameters [18]. Data-driven approaches have two

drawbacks; they depend on good data preparation, and both

training and testing samples should be drawn from the same

data distribution [19]. It is important to remedy these defi-

ciencies to increase the efficiency of data-driven approaches

by implementing deep learning models.

With the rapid development of computer system, artifi-

cial intelligence (AI) methods have been broadly used in

many applications to assist human in interpreting data trends.
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TABLE 1. List of available research at each FDD stage.

FIGURE 1. Relationship of artificial intelligence methods.

As illustrated in the diagram of AI systems in Fig. 1, deep

learning (DL) is a subarea of machine learning. Deep learning

has been used in many applications including natural lan-

guage processing [20], image processing [21], robotics [22],

FDD systems [23] and medical applications [24]. The rapid

growth of DL implementation in many areas is due to sev-

eral reasons, including the increase in research on machine

learning models and the increase in graphics processing unit

(GPU) development [25]. The complex architecture of DL

requires a fast computing process to train complex archi-

tecture. Deep learning models provide an automated feature

learning process that can replace the manual feature selection

of traditional fault detection and diagnosis (TFDD).

In recent years, the most common deep learning models

that have been extensively used in FDD systems include

convolutional neural network (CNN), stacked autoencoder

(SAE), restricted Boltzmann machine (RBM), deep belief

network (DBN) and deep neural network (DNN) [26]. The

SAE, RBM and DNN models are usually called deep neural

networks, and are described in [27]–[29]. Every DL model

has its own variants, which have been briefly discussed

in [30].Meanwhile, Ravi et al. conducted a comparative study

of the advantages and disadvantages of each deep learning

model [31].

This review is intended to provide a brief discussion

of challenges and future development of DL applica-

tions in FDD systems for rotating machinery. It does not

describe each DL architecture, as such information has been

discussed in detail in [32]–[34]. Meanwhile, the advantages

and disadvantages of every DL model used in FDD systems

have been discussed in [35].

The remainder of this paper is organised as follows:

Section 2 presents a review of the stages of FDD.

Section 3 discusses the advantage of DL over shallow learn-

ing models. Section 4 describes the challenges of DL in an

FDD system. The future development of DL models in FDD

systems is discussed in Section 5. Section 6 concludes the

paper.

II. FAULT DETECTION AND DIAGNOSIS STAGES

Fault detection and diagnosis can be divided into four stages:

fault detection, fault identification, fault severity assess-

ment and fault growth and remaining useful life prediction.

Table 1 presents the available reference on each FDD stage

for shallow machine learning (SML) and DLmodels. In FDD

systems, data acquisition is important to obtain the signal

that reflects the physical condition of the machinery com-

ponent. In practice, there are several types of monitoring

tools including acoustic emissions (AE), vibration, pressure,

oil analysis and thermal analysis [2]. Fig. 2 represents the

available sensors that can be used in FDD systems, which

is based on detection level [36]. Chacon et al. stated that

AE detects faults earlier than other sensors [37] and can thus

provide early detection when faults are present.

A. FAULT DETECTION (STAGE 1)

Fault detection is the examination of faults present in machin-

ery components. A recent study found that most research on

fault detection focuses on incipient faults so that the next

stage of the FDD process can be performed. Incipient fault

detection is important to prevent catastrophic failure [38].

Since approximately 2011 to 2015, incipient fault detection

has been focused on using AE due to the high sensitivity of

the AE sensor. Ferrando Chacon et al. [39], Hiremath and

Reddy [40], and Kilundu et al. [41] are among the authors

who used AE as a monitoring method for detecting incip-

ient faults. However, in recent years, researchers including
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FIGURE 2. Detection level for each monitoring method [36].

Klaussen andRobbersmyr [38], Seshadrinath et al. [42], Zhao
and Jia [43] and Lu et al. [44] have successfully diagnosed

incipient faults using vibration analysis with more advanced

signal processing techniques. Wei et al. discussed in detail

early fault diagnosis in rotating machinery components [45].

B. FAULT IDENTIFICATION (STAGE 2)

Fault identification is the examination of the location and type

of faults in machinery components. Fault location identifica-

tion is usually performed on bearing components; faults can

be located in the outer race, inner race or rolling element [46].

Meanwhile, fault type identification is performed in gear

component, and types include chipped gear tooth [47], miss-

ing gear tooth [47], worn gear [48] and tooth root crack [49].

Most DL models have been extensively used up to this

stage 2.

C. FAULT SEVERITY ASSESSMENT (STAGE 3)

Fault severity assessment is the process of determining

the size of a fault located in a mechanical component.

Kumar et al. have proposed a potential method of estimating

fault size in bearing components using the integration of sig-

nal processing and a machine learning (ML) model [50]. The

proposed system requires a good signal processing method

to reveal the vibration peak produced when contact occurs

between the rolling element and the surface of a fault.

D. FAULT GROWTH AND REMAINING USEFUL LIFE

PREDICTION (STAGE 4)

The remaining useful life (RUL) process is the prediction of

the life cycle of a machinery component. Meanwhile, the pre-

diction of fault growth is based on the size of the fault after

a certain cycle. The output of RUL analysis is the predicted

period/time of the component breakdown. A Stage 4 analysis

might be useful in an FDD system if the output RUL predic-

tion is expressed in terms of the relationship between time and

size of fault growth. To the best of our knowledge, no current

research has done this analysis. In common, the features

that are more sensitive to fault characteristics will be used.

Si et al. [51] conducted a review of statistical approaches for

determining remaining useful life. Meanwhile, Nguyen et al.

FIGURE 3. Performance of deep learning model and shallow learning
model [88].

provided a detailed discussion of failure prognostics using a

deep learning model [52].

III. A COMPARATIVE STUDY OF DEEP LEARNING AND

SHALLOW LEARNING MODELS IN FDD SYSTEMS

In recent decades, FDD systems have typically used the

support vector machine (SVM), k-nearest neighbour (KNN),

decision tree (DT) and artificial neural network (ANN) mod-

els. These types of models are sometimes called shallow

machine learning (SML) models [11]. The FDD systems

based on SML models are called traditional fault detection

and diagnosis (TFDD) systems, which are based on statistical

data-driven [76]. For a model to perform well in TFDD

systems, the massive number of features should be care-

fully selected to reduce the computational complexity of the

SML model and prevent degradation of classification accu-

racy [77]. In the SML model, the feature selection process is

introduced to reduce irrelevant and redundant features [78].

Hui et al. proposed an improved wrapper method to select

the best features for an SVM model, which improved its

computational efficiency [79].

Moreover, SML models have another deficiency in term

of training size. At a certain stage, model performance will

become stagnant, as shown in Fig. 3. In contrast, DL models

are highly effective when using large training samples [80].

Cao et al. conducted a comprehensive study on training data

size where the authors proved that the diagnosis performance

of a DL model increased as the size of the training data set

increased [81].

Traditional fault detection and diagnosis systems require

five important steps, as shown in Fig. 4: data acquisition, data

processing, feature extraction, feature selection/dimensional

reduction and feature classification [82]. Finding suitable

methods for each step is crucial and requires a trial-and-error

process. Each application of a traditional FDD system uses

a unique set of methods. For example, Xu et al. performed

the TFDD process on bearing components by using modified

distance discriminant technique, fuzzy ARTMAP, correlation

measure, Bayesian belief method and a selective ensemble of

multiple classifiers [83].Meanwhile, Cerrada et al. conducted

gearbox fault diagnosis using the following combination
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FIGURE 4. The difference between deep learning and shallow learning models in fault detection and
diagnosis systems.

methods: correlation-based feature selection, entropy-based

feature selection using random forest (RF), the Mamdami-

type fuzzy model, hierarchical clustering and membership

degree estimation using a fuzzy approach [84].

Deep learning models do not require the combination of

methods for each TFDD step; the process is done using multi-

ple hidden layers of deep learning architecture [33]. However,

under certain conditions, DL models require a signal/data

processing step if the signal/data is too noisy. For example,

Liu et al. used variational mode decomposition (VMD) to

process the vibration signal obtained from the planetary gear-

box and fed the processed signal into a CNN model [85].

Shao et al. used a dual-tree complex wavelet packet to refine

the fault characteristics of the vibration signal and fed the data

into an adaptive deep belief network (DBN) [86]. In addition,

Guan et al. used empirical mode decomposition (EMD) to

extract the fault signal that carries more information regard-

ing the physical condition of the machine [87]. The signal

reconstructed by EMD is transformed into the frequency

domain, and the DBN model is used for the fault diagnosis

process. However, the previous research did not compare

the performance of the DL model between raw time domain

and processed signal. Hence, the performance of the deep

leaning model with and without signal processing cannot be

discussed.

A. CHALLENGES OF DEEP LEARNING MODELS

IN FDD SYSTEMS

The challenges of a DL model are related to its architecture

and training process. Even though there is extensive pub-

lished literature on DL implementations in FDD systems,

they require prior knowledge regarding their architecture.

Currently, several programming modules such as MATLAB,

R and Python have been used for the development of DL.

Due to different styles of code and training processes, diag-

nosis performance might be different for each programming

module. For the last few decades, the deep architecture of the

DL model has been difficult to train. The greedy layer-wise

pre-training steps proposed by Hinton et al. have reduced the
difficulty of the training process [89]. However, several chal-

lenges must still be overcome for the DL model to perform

effectively in FDD analysis.

B. THE TRAINING PROCESS OF A DEEP

LEARNING MODEL

The training process is a crucial part of a DL model. The

model is first trained by being given a set of example data,

and the parameters (bias and weight) are fine-tuned using

a backpropagation algorithm. However, three factors should

be taken into consideration before and during the training

process: characteristics of input data, size of the dataset and

the architecture DL model which are discussed in detail as

follows.

1) CHARACTERISTICS OF INPUT DATA

Division of the continuous signal into several segments is

a common process in FDD systems. The segmented sig-

nal is distributed into training and testing samples for the

analysis. There are two types of segmentation processes

that can be performed on a continuous signal, as shown in

Fig. 5: segmentation without overlapping and segmentation

with overlapping. Overlapping is a data enhancement or data
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FIGURE 5. Signal segmentation process. Type 1: Non-overlap
segmentation; Type 2: Overlap segmentation (Red box: 1st segment,
Yellow box: 2nd segment and Green box: 3rd segment).

FIGURE 6. The difference in bearing signal characteristics based on shaft
speed. (Left: Normal dataset; Right: Fault dataset) [100].

augmentation process to increase the number of data sam-

ples for better generalisation of DL models [90]. Determin-

ing the correct segmentation length is a crucial part of the

analysis in order to preserve the important features in each

segmented signal. For example, Duong and Kim segmented

the continuous signal into lengths of 500 and 1000 data points

for bearing fault analysis. Further details regarding signal

segmentation can be found in the research of Jing et al.
who conducted a comprehensive study on segment length of

a continuous vibration signal [91]. Meanwhile, Chen et al.
did an analysis of segment length from 64 to 1024 with the

increment of 64 segment length using the DBN model. The

result showed that diagnosis performance increased with the

increase in segment length [92]. Several authors discussed the

relation of data point number and segment length by propos-

ing the mathematical equations shown in Table 2. It should

be noted that knowledge of the data is required to select the

length of segmentation. For example, Liu et al. used 50%

overlap on the continuous vibration signal [93]. Ma et al.
overlapped the signal by 0.1 seconds out of the total length

of 0.5 seconds [94].

Other challenges of the segmentation process arise when

dealing with low-speed and incipient fault signals. In those

conditions, the interaction of the fault and the rolling element

is at a low energy level, which causes the fault peak amplitude

TABLE 2. Segmentation equation.

FIGURE 7. The difference of bearing signal characteristics based on fault
size; a) Vibration signal with severe fault, b) Vibration signal with
incipient fault [45].

to occur rarely in the signal, which in turn makes the informa-

tion difficult to extract [98]. An example of a low-speed signal

is shown in Fig 6. It can be seen that as the speed increases,

the fault peak amplitude becomes more frequent and obvious.

Another example of a signal from low-speed operation can

be found in the work of Kim et al. [99]. Figs. 7(a) and 7(b)

represent the sample signals of large and incipient faults,

respectively. In Fig. 7(a), the fault peak amplitude is present

in the signal at regular intervals, which provides similar

information on each segment signal. However, the peaks from

low-speed operation (Fig. 6a) and the incipient fault (Fig. 7b)

are not frequent, and each segmented signal might contain

different information, which would decrease the quality of

the diagnosis analysis.

Each segmented signal can be fed into a DL model in

several forms, as listed in Table 3. Input characteristics for

DL models are essential for accurate diagnosis. Saufi et al.
conducted a study in which each type of input data produced

a different diagnosis performance [71]. The authors used a

stacked sparse autoencoder (SSAE) model to analyse mul-

tiple types of input, proving the versatility of a DL model
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TABLE 3. Input types.

over a SMLmodel. They concluded that the selection of input

types is a crucial part of a better FDD system. In recent years,

researchers have tended to use raw time domain and time-

frequency image data because they do not require expend-

ing much effort on manual data preparation. For example,

Wu et al. used a 1D time domain with a CNN model and

proved that their proposed diagnosis system outperformed

a shallow learning model with statistical features [101].

Extraction of statistical features from each signal domain is

time intensive and requires expertise to perform the analysis.

In addition, it is difficult to determine the features that should

be used, because the features vary according to applica-

tions [102]. The total number of statistical features from all

domains can add up more than 100; Cerrada et al. extracted

359 statistical features from all domains to diagnose gear

components [103], and Chen et al. extracted 256 statistical

features for FDD analysis on gearbox components using the

CNN model [104]. The details of the statistical features for-

mula can be found in [105]–[107]. Xiang et al. used a teager

computed order (TCO) spectrumwith a stacking autoencoder

to perform fault diagnosis of bearing components under fluc-

tuating speed and variable load [108]. The authors extracted

42 statistical features from three domains and fed them into

an SML model. The results showed that the proposed DL

model outperformed the SMLmodel. During the experiment,

Xiang et al. used two bearingswith similar geometry and fault

characteristics—one for training data and another for testing

data—in order to simulate an actual industrial fault diagnosis.

2) SIZE OF DATASET

A large dataset is essential for a DL model, especially for

a mechanical signal. However, until now the size of train-

ing data has depended on user expertise, and there are no

guidelines to ensure that the data is adequate for the train-

ing process. Most recent studies used large datasets to train

their models. For example, Shao et al. used approximately

6,000 to 9,000 training samples to train a CNN model [112].

Guo et al. sampled 32,256 data points to achieve 99% diag-

nosis accuracy [113]. The authors used Pythagorean spatial

pyramid pooling CNN to increase the robustness of the model

when using data from variable rotating speed conditions.

Meanwhile, Jian et al. achieved a satisfactory diagnosis result

using 5,000 training samples for bearing components [90].

Zhong et al. fed a generative adversarial network 3,000 train-
ing samples for each air handling unit fault condition [114].

The current challenge facing DL models is to handle more

TABLE 4. List of input dimensions used on deep learning models.

testing samples than training models. Currently, most DL

models have been trained with more than 50% more training

samples than testing samples. The capability of DLmodels to

perform FDD with a small number of samples has not been

determined. The difficulty of obtaining enough data samples

in industrial environments to train a deep learning model

has been discussed in [115]. In addition, large datasets are

rarely available in industrial applications [116]. Meng et al.

addressed the difficulty of obtaining large training samples

by using Type 2 data processing, as shown in Fig. 5 [117].

In addition to the number of samples, the size of the

input dimension should be considered during the analysis.

Common sizes of input features used for DLmodels are listed

in Table 4. According to analysis by Shao et al. the training
time of a deep learning model significantly increases with an

increase in input dimensions [118]. It is worth mentioning

that the segmentation signal length sometimes equals to the

input dimension as several DL models are directly fed with

the segmented signal in raw time domain.
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TABLE 5. List of hyperparameters in deep learning models.

3) THE ARCHITECTURE OF DEEP LEARNING

In general, ML architecture contains parameters and hyper-

parameters. Bias and weight are common parameters in the

ML model that are usually randomly initialized and fine-

tuned using the backpropagation algorithm. However, hyper-

parameters must be pre-set before an ML model can perform

a training process. As they are based on deep architecture,

DL models have more hyperparameter settings than SML

models. Manual selection of hyperparameters is a difficult

task, and guessing the values of the optimal hyperparameters

is time intensive [128]. Darwish et al. concluded that it is

difficult to determine accurate and efficient DL architecture

in a reasonable time [129]. A list of specific and general DL

hyperparameters is presented in Table 5.

Among the DL hyperparameters, the activation function

should be manually set by the user because it is difficult

to optimise algorithmically. Activation function selection

requires user experience and knowledge. The variety of

activation functions available for deep learning models dur-

ing their analysis of bearing fault diagnosis have been dis-

cussed in [109]. Deep learning and SML models generally

use sigmoid functions for activation. However, according

to Dahl et al. rectified linear units (ReLU) achieved the

same training error as sigmoid functions with a quicker

training process [130]. Zhao and Kang diagnosed planetary

gearbox conditions by using a ReLU activation function

in a CNN model [131]. The authors conducted the data

collection process for 56 seconds for each fault condition.

Long duration of data collection is useful to increase the

training and testing datasets. Ma et al. performed a fault diag-

nosis on bearing components by proposing a concatenated

rectified linear unit (CReLU) in a CNN model [132]. The

authors concluded that the proposed model is small, light

and fast and can achieve satisfactory diagnosis performance.

Meanwhile, Shao et al. conducted a comparative study on

several types of activation functions in a deep autoencoder

model [133]. The authors conducted the analysis using the

Case Western Reserve University (CWRU) dataset with 12

bearing conditions where the highest diagnosis accuracy was

97.18%.With 400 input dimensions, the authors were capable

of diagnosing the dataset.

Another hyperparameter that should be manually set is

the backpropagation algorithm. In recent years, ADAgrad,

RMSprop, stochastic gradient descent (SGD), Nesterov,

ADAdelta andAdam are popular backpropagation algorithms

for deep learning models [134]. Jian et al. conducted a

comparative study of ADAdelta, Adam and RMSprop for

their proposed adaptive one-dimensional CNN model [90].

For motor bearing fault diagnosis, the authors achieved

higher diagnosis performance with RMSprop. Liu et al.
implemented RMSprop on a recurrent neural network-based

autoencoder for fault diagnosis of rolling bearings [93].

Gong et al. conducted a comparative study between stochastic

gradient descent (SGD), ADAgrad, ADAdelta, RMSProp and

Adam using a rotating machinery dataset [135]. The result

showed that Adam produced higher accuracy compared to

other backpropagation algorithms. However, the algorithms

differed only slightly in terms of classification accuracy,

training time and test time. Lai et al. performed a compre-

hensive analysis of the backpropagation algorithm and found

a slight difference between RMSProp and Adam in diagnosis

performance [136]. Pan et al. diagnosed bearing conditions

accurately with an implementation of the Adam algorithm in

the CNN model [137]. Tang et al. used Nesterov momentum

for a DBNmodel that outperformed the standard DBNmodel

using a gearbox dataset [138].

New variants of Adam and AMSgrad are proposed by

Luo et al. to overcome the poor generalisation of ADAgrad,

RMSprop and Adam [139]. The new variants are called

ADAbound and AMSbound. If these new backpropagation

algorithms provide significant improvements, especially for

complex deep architecture, they could present a challenge to

the current algorithms. Implementation of these algorithms

in DL models for FDD systems is useful to increase their

performance.

The hyperparameter that rarely gets attention is the number

of hidden layers, even though the hidden layer size is part

of the definition of a DL model. According to analysis by

Ren et al. a deep network must consist of an input layer and

output layer separated by two or more hidden layers [140].

The specific hyperparameters of each deep learning model

need to be set in each hidden layer. Thus, selecting the

number of hidden layers is a crucial step that affects the

selection of other hyperparameters. Wang et al. stated that

the proper selection of hidden layers is important to avoid

computational complexity [141]. Heo and Lee performed an
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FIGURE 8. Training conditions of deep learning models.

FIGURE 9. Relationship of train and test error during training process.

analysis in which the diagnosis performance increased with

an increase in the number of hidden layers [142]. However,

an analysis by Saufi et al. showed that diagnosis performance

varies according to the number of hidden layers [128], which

is similar to the result achieved by Sohaib and Kim [68] and

Jing et al. [91].
During the training process, the DL model can be in a

condition of good fit, underfit or overfit, as illustrated in Fig 8.

Fig. 9 represents the relationship between prediction error

and training cycle of the DL model. Dong et al. briefly
explained the nature of overfit and underfit as they occur in

MLmodels [143]. The ideal condition is a good fit, where the

model reaches high training and testing accuracy.

The model will experience an underfit condition when

the training and testing accuracy are low because the

model is unable to learn the pattern input features due

to a smaller number of training data points. According to

Saurabh, underfitting occurs when the number of hidden

neurons is low compared to the complexity of the input

data [144].

In the overfit condition, the model achieves high train-

ing accuracy and low testing accuracy. Too many train-

ing cycles (epochs) may cause the model to memorise

the features instead of generalising the feature patterns.

In terms of FDD analysis, the noisy data may contribute

to an overfitting problem wherein the model captures the

noise along with the important features. Srivastava et al.
stated that implementation of dropout and L1/L2 regulari-

sation is capable of reducing the overfitting problem [145].

Shao et al. validated their proposed model performance by

presenting training error and classification rates to prove that

the model did not experience an overfitting problem [146].

In addition, the authors indicated that overfitting problems

occur when the number of hidden neurons increases. Simi-

larly, Sheela and Deepa stated that random selection of the

number of hidden neurons may cause a MLmodel to underfit

or overfit [147].

As mentioned in the previous section, several authors

applied signal processing methods to noisy input data to

remove unwanted noise. The training conditions are closely

related to DL hyperparameters. Widodo et al. emphasised

the importance of hyperparameter selection to reduce over-

fitting problems [54]. He and He mentioned deep learning

based signal processing has been developed for bearing fault

diagnosis [97].

C. IMPLEMENTATION OF REAL MACHINERY SYSTEMS

Most of the DL applications available in public articles use

experimental datasets for FDD analysis. Few studies have

been found that use a real machinery system. Experimental

and real machinery datasets differ in quality. An experi-

mental dataset is collected under controlled conditions with

a less complex system and less environment disturbance.

A real machinery system, on the other hand, is a complex

structure, and the collected data contain the information

from unrelated components of interest. Xu et al. have ques-
tioned how high-quality raw data can be obtained in a cost-

effective way [148]. In FDD systems, data quality depends

on the types of sensors, data acquisition setup, the surround-

ing environment and the duration of the data collection.

Zhang et al. emphasised that sensor problem result in poor

data quality and they conducted a thorough review of how to

handle low quality data using DL models [149]. High data

quality is essential to ensure satisfactory performance of a

DL model.

Wang et al. stated that most studies they reviewed on

wind turbine gearboxes aimed to refine the fault-related sig-

nal more clearly by filtering the background noise and the

unrelated vibration components [150]. Xu et al. suggested
that under practical conditions, the data cleaning procedure

is important to ensure good performance of a deep learn-

ing model [151]. The accuracy of a deep learning model is

reduced if the input signal/data contains noise [18]. Teng et al.
and Saidi et al. performed a fault diagnosis on real wind

turbine gearboxes [61], [152] and it is noted that satisfac-

tory diagnosis performance is difficult to achieve in real

applications. Sadoughi et al. diagnosed bearing conditions

in hay balers, and their proposed model achieved diagnosis

performance of less than 95% [66]. Shao et al. diagnosed
locomotive bearing conditions using a deep autoencoder and

achieved diagnosis performance of up to 87.8% [118]. How-

ever, the performance reached 94.05% for the experimental

dataset [118]. Xie et al. diagnosed bearing conditions on an

experimental test rig and achieved diagnosis performance of

between 98% and 100% for every bearing condition [153].

Yang et al. achieved approximately 99.57% to 100% accuracy

when diagnosing bearing conditions from the CWRU dataset.
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Liu et al. diagnosed a natural gas reciprocating compressor

component using advanced signal processing consisting of

linear mode decomposition and a stack denoising autoen-

coder [154]. The author achieved diagnosis performance

of 92.72% under the condition of low signal-to-noise ratio.

Peng et al. diagnosed wheelset bearings in a high speed train
using a deeper 1D convolutional neural network; the model

achieved between 89.7% and 99.9% diagnosis performance

with different noise conditions in the dataset [155]. The

authors used data augmentation to increase the sample size to

329,752 samples. Fault diagnosis on real machinery systems

will be a great challenge in future years as current systems

become larger and more complex with a high potential to

break down on any given day [156].

Moreover, every ML model, including deep learning,

requires labelled data, which are usually difficult to obtain

in real industries [157]. In order to solve this problem, Li et

al. proposed data augmentation methods that can create an

artificial additional sample during the deep learning train-

ing process [157]. The authors demonstrated five types of

data augmentation: gaussian noise, masking noise, amplitude,

time stretching and signal translation. Han et al. used the

adversarial learning framework with the CNNmodel in order

to deal with small labelled samples [127]. They analysed

training datasets of different sizes and found that the diag-

nosis performance increased as the number of training data

samples increased.

Furthermore, imbalanced datasets commonly occur in

industry environments, where the datasets for normal and

fault conditions do not have similar sample sizes [158].

Chen et al. proposed graph-based rebalance semi-supervised

learning (GRSSL) in order to deal with an imbalanced, unla-

belled dataset [159]. The authors used the CWRU dataset to

validate their proposed model. Zhang et al. briefly discussed

the conditions of imbalanced datasets, on which they used a

synthetic oversampling technique called weighted minority

oversampling. The authors used a deep learning model to

effectively learn the input features for accurate fault diag-

nosis on an intelligent maintenance system (IMS) bearing

dataset [160]. Chen et al. analysed imbalanced SCADA

data for fault detection in wind turbines using a CNN

model [161]. The proposed model was able to separate the

data from different classes effectively using principal compo-

nent analysis. Meanwhile, Jia et al. diagnosed bearing condi-
tions with imbalanced fault classification using a normalized

CNN model with a neuron activation maximization (NAM)

algorithm [162]. According to the authors’ result, diagno-

sis performance decreases when the percentage of dataset

imbalance increases.

IV. DEVELOPMENT AND MODIFICATION OF DEEP

LEARNING MODELS IN FDD SYSTEMS

The versatility of deep learning models allows for better

FDD systems compared to SML models [32]. In this

section, several non-related articles on machinery fault diag-

nosis have been used for recommendation and reference

FIGURE 10. Architecture of a DL model for FDD systems.

in a future study. In this section, potential avenues for

development and modifications of DL models in FDD sys-

tems are discussed.

A. COMBINATION OF DEEP ARCHITECTURE

WITH SML MODEL

Deep learning contains a number of hidden layers that are

used for feature extraction. The last layer of a DL model

is the classification layer, which is used to classify the

extracted features. The architecture of a DL model is illus-

trated in Fig. 10. Softmax regression is typically used as

a classification layer in deep learning models [163], [164],

but KNN, DT, SVM, ELM and ANN can also be used. The

integration of a sparse autoencoder and an SVM model was

proposed by Ju et al., who used various UCI datasets to test

their proposed model [165]. SVM is a well-knownmodel that

can handle data with low sample sizes and high-dimensional

features [166]. This integration may provide a great opportu-

nity for dealing with small data sample sizes in the machin-

ery component. Meanwhile, Xu et al. combined CNN with

random forest (RF) ensemble learning [151]. They used the

CNN model to extract the low-level features and input the

features into the RF for classification. Li et al. diagnosed
gearbox conditions using two RBM layers for the feature

extraction process and RF as an output classifier [167]. The

authors achieved a slight difference in diagnosis performance

by changing the output classifier with SVM and KNNmodel.

Li et al. combined DBN and random forest to classify space-

craft electrical signals; this method performed well in term of

classification accuracy and computational efficiency [168].

The data used by the authors contained 1,000 features, and

the data is distributed with 56% of training data and 44% of

testing data. This approach is capable of reducing the com-

putational load and enhancing the classifier’s performance.

Moreover, Monteiro et al. used SVM in order to improve

the decision level of a CNN model, which produced a great

improvement in training time and diagnosis accuracy [169].

Cheng et al. successfully diagnosed wind turbine gearboxes

based on the current signal using autoencoder and SVM

models, achieving an overall performance of 89.3% [170].
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During the analysis, the authors used the Hilbert transform

for amplitude demodulation. Haidong et al. reached approx-

imately 95% diagnosis accuracy for 12 classes of bearing

conditions from the CWRU dataset by combining a deep

autoencoder with extreme learning machine (ELM) [5]. Sim-

ilarly, Mao et al. proposed a combination of autoencoder and

ELM in order to achieve satisfactory diagnosis performance

with acceptable processing time [171]. The authors discussed

71 statistical features from time domain, bispectrum, EMD,

and the wavelet packet decomposition, where each input data

is sensitive to certain types of bearing conditions. Li et al.
proposed a deep ELMmodel in which the sparsity and neigh-

bourhood are integrated into the deep model and used to

analyse a bearing fault dataset. The proposed model achieved

97% accuracy for experimental data [172]. The experiment

was conducted on a Spectra Quest rotor experimental plat-

form and the data was collected at a 12 kHz sampling rate.

The proposed diagnosis system outperformed other DL mod-

els including a stacked denoising autoencoder and a CNN.

Meanwhile, Wang et al. used the CNN model to learn the

data features automatically from the CWRU dataset raw sig-

nal [173]. The features were fed into a hidden Markov model

in order to classify the signals based on bearing conditions.

The authors achieved approximately 98% diagnosis accuracy

for 12 classes of bearing conditions, which is slightly higher

compared to Haidong et al.’s model.

Instead of being used as a classifier in a DL model,

the SML model can be used for data processing along with

deep architecture. For example, Hu et al. used amulti-grained

scanning forest ensemble at each DBM hidden layer in order

to perform accurate diagnosis on industrial machinery sys-

tems [174]. Hu et al. conducted a comprehensive study of the

relationship between the number of classes and the diagnosis

accuracy, noting that performance decreases as number of

classes increases. In addition, Liu et al. used RNN to analyse

multiple time sequence data and a denoising autoencoder to

analyse the CWRU dataset [93]. The authors added noise to

the dataset to create signal-to-noise ratios (SNRs) ranging

from 1% to 10%. The performance of the proposed model

increased from 96.98% to 99.75% as the SNR increased,

and the analysis indicated that the noise contained in the

signal might reduce the deep learning model performance.

Li et al. proposed using deep stacking least squares SVM

(LS-SVM) with a one-against-all strategy to extract features

from the CWRU bearing signal [175]. They found that the

classification accuracy increased along with the increase in

stacking layer modules.

B. HYPERPARAMETER OPTIMISATION

Hyperparameter selection is an important process, as the

performance of a deep learning model is highly affected by

the hyperparameters [176]. Optimisation of hyperparameters

for DL can be automated using several methods, as listed

in Table 6. Optimisation algorithms are computationally

intensive, with the computational load depending on the

hyperparameter size. Even with automated hyperparameter

TABLE 6. Potential algorithms for deep learning hyperparameter
selection.

optimisation, human intervention is still needed to decide on

the search space for the hyperparameter boundaries [130].

Until now, the optimisation process was limited to numerical

hyperparameters.

Wahab et al. conducted a detailed analysis of metaheuris-

tics optimisation algorithms including particle swarm optimi-

sation, differential evolution (DE), genetic algorithm (GA),

artificial ant colony, artificial bee colony, glowworm search

optimisation and cuckoo search optimisation [177]. They

used a benchmark function to analyse these algorithms.

Meanwhile, nature-inspired algorithms have been briefly

reviewed by Fizter Jr. et al. and they listed all available opti-

misation algorithms along with references [178]. Beheshti

and Mariyam conducted a comprehensive review of meta-

heuristic algorithms [179]. The detailed analysis by these

authors provides a great deal of information on the imple-

mentation of optimisation algorithms in DL models for FDD

systems.

New optimisation methods have been proposed by Mir-

jalili including grey wolf optimiser, salp swarm optimisation,

grasshopper optimisation, ant lion optimisation and whale

optimisation [180], [181]. It is worth mentioning that the

methods proposed byMirjalili are more user-friendly because

they require fewer parameter settings for the algorithms,

which can be easily used for DL hyperparameter selection.

Several studies have demonstrated the potential of auto-

mated hyperparameter selection in DL models for FDD

systems. For example, Saufi et al. compared the perfor-

mance of random search, grid search, Bayesian optimisation,

GA and DE and proved that all methods have the ability

to optimise DL hyperparameters [128]. However, DE pro-

duced slightly higher performance compared to other opti-

misation algorithms. Haidong et al. used an artificial fish

swarm algorithm and particle swarm optimisation to optimise

deep autoencoder and deep belief network hyperparameters,

respectively [118], [182].

C. IMPLEMENTATION OF REMAINING USEFUL LIFE AND

PROGNOSIS ANALYSIS

Most prognoses and predictions of RUL rely heavily on

statistical features. Ren et al. extracted three time domain

features and one frequency domain feature to estimate the

remaining useful life of bearing components [140]. Twenty

features related to pressure, temperature, fan and core speed,

fuel flow and coolant bleed have been used to predict the pos-

sible remaining operational life of aircraft gas turbines [74].
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Zhang et al. used a deep learning-based long short-term

memory (LSTM) approach to estimate the RUL of aircraft

engines. Their model reached the lowest prediction root mean

square error (RMSE) at 16.12 [189]. Haidong et al. used a

continuous deep belief network (DBN) with locally linear

embedding (LLE) to estimate the remaining useful life of

bearing components [190]. The authors used the IMS dataset

to test their proposed RUL system, and the model achieved

the lowest prediction error of 0.7801%. The authors proposed

a comprehensive index feature where the performance of

DBN using proposed feature outperformed other six statis-

tical features. Ren et al. fed multiple features from time, fre-

quency and time-frequency domains into a deep autoencoder

and deep neural network, and the model produced a mean

square error (MSE) of 0.2 [191]. Similarly, Wang et al. used
features from time, frequency and time-frequency domains

to predict the useful life of bearing components using a two-

dimensional CNN model [192]. The proposed CNN model

outperformed other models in terms of prediction time and

error rate. Meanwhile, Li et al. predicted the degradation

process of a turbofan engine using deep CNN with raw sig-

nal datasets [193]. According to the analysis, the prediction

error rate decreases with an increase in convolutional layers.

Zhu et al. diagnosed bearing component using a wavelet

transformation representation and multiscale CNN [194].

Li et al. carried out a prediction analysis using an image

of the short-time Fourier transform and a CNN model and

proved that the RUL process can be used with time-frequency

images as input data [195]. Deutsch and He predicted the life

of bearings and gear components using a DBN-feedforward

neural network model [196]. Ellefsen et al. proposed a com-

bination of RBM and LSTM for detecting turbofan engine

degradation [197]. The authors used a GA to optimise random

hyperparameters of the proposed model. Al-Dulaimi et al.
proposed a hybrid model of CNN and LSTM in order to

estimate the remaining useful life of turbofan engines [198].

In addition, Zhang et al. used a deep recurrent neural network

to analyse a similar dataset of turbofan engines [199]. The

authors used temperature, pressure and speed sensors dur-

ing the analysis, which demonstrated that under real-world

conditions, multiple types of sensors should be taken into

consideration.

Root mean square error (RMSE), mean absolute percent-

age error (MAPE) and mean absolute error (MAE) have

always been used to examine the performance of deep learn-

ing models for RUL analysis and are generally used together

during the analysis [52]. In addition, it was proved that RULs

models can use time-frequency images and raw time domain

signals. However, use of these types of input data for RUL is

still at an early phase and requires more study in future years.

D. INTEGRATION OF MULTIPLE SENSOR TYPES

A great deal of information is required to examine the con-

dition of large machinery such as a wind turbine compo-

nent. Vibration analysis is the usual method used in FDD

systems and has been proven to be effective as reported by

FIGURE 11. Fault visualisation method.

FIGURE 12. First three principal components of the features from CWRU
bearing data [207].

Hui et al. [200]. Most of the reference articles in this review

paper used vibration analysis to test the proposed models.

However, under certain circumstances, a single type of sensor

may not provide enough information regarding the condition

of the machine. According to Sarkar et al. the time series

signal obtained from a single sensor may not carry sufficient

information regarding the evolving fault [201]. They also

successfully diagnosed aircraft gas turbine engines based on

combining information from multiple sensors such as pres-

sure, temperature and speed. Wang et al. stated that there

are 41 parameters from various sensors that can be used for

monitoring wind turbine conditions [202]. Li et al. performed

a data fusion process by combining vibration and acoustic

emission (AE) data for gearbox fault diagnosis [167]. They

found that the combined data (AE and vibration) produced

higher diagnosis performance compared to the analysis with-

out data fusion. In addition, Jing et al. used multiple types

of sensor (accelerometer, microphone, current sensor, optical

encoder) with a deep convolutional neural network to diag-

nose planetary gearbox condition [203]. Jing et al. conducted
a study in which they combined all of the sensor data as an

input data for their proposed DL model. Multi-type sensor

data fusion is among the future opportunities for develop-

ment, since DL models have the ability to analyse high-

dimensional features. Numerous sensors of different sizes

may contribute to a multidimensional data space [204], which

would give DL a great advantage over SML.
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FIGURE 13. Feature learning and t-SNE analysis: a) Analysis with known target data; b) Analysis with unknown target data.

E. FAULT VISUALISATION ANALYSIS

A DL model contains two processes: feature learning,

in which the model extracts the features automatically from

the input data; and feature classification using a fully con-

nected layer [81]. Integration of feature learning with visual

feature representation may provide a fault visualisation

method, as shown in Fig. 11. There are several types of fea-

ture visualisation including t-distributed stochastic neighbour

embedding (t-SNE), principal component analysis (PCA),

locally-linear embedding (LLE), linear discriminant analysis,

locality preserving projection and isometric projection [205].

The most common method used to analyse machinery data

feature is a t-SNE model. The T-SNE model was developed

by Van Der Maaten and Hinton [206]. However, there is no

proof of the effectiveness of t-SNE over other methods, which

provides a great opportunity for future study.

Yang et al. used features from the frequency domain

and reduced the dimensions of the extracted features before

inputting them into a DNN model for bearing fault diagno-

sis [207]. Then, the features processed by DNN were visu-

alised using the PCA model. The authors proved that feature

clustering can be automated. An example of their results is

shown in Fig. 12, where a clear boundary can be noticed for

each class condition.

Moreover, in this paper, a simple analysis based on time-

frequency image input data and a stacked sparse autoencoder

(SSAE), with a t-SNE model used to analyse the dataset from

CWRU. SSAE and t-SNE are both based on default archi-

tecture in MATLAB module. The raw time domain signal,

with segment length of 800 without an overlapping process,

is transformed into a time-frequency image and it is directly

fed to the SSAE model.

Fig. 13(a) consists of the t-SNE visualisation from each

SSAE hidden layer with the given target values. The visual-

isation contains four classes, and the feature representation

improves at each SSAE hidden layer. Meanwhile, Fig 13(b)

represents the analysis without the target value, and the fea-

ture is visualised in a single colour. One limitation of current

diagnosis systems is that they require target values for better

analysis. However, in Fig 13(b), it can be seen that even

without a target value, the bearing conditions can be classified

into several groups. Classes 2 and 3 might be misinterpreted

during the analysis since both overlap. The Fig. 13(b) visuali-

sation demonstrates that fault visualisation can provide initial

information during the FDD analysis. However, this analysis

is insufficient, since the SSAE and t-SNE models are run

using the default setup. If all aforementioned challenges have

been met, fault visualisation methods can be improved, and

clear separation between each fault class can be produced.

F. THE AVAILABLE ONLINE MACHINERY DATASETS

The vast majority of publications regarding FDD systems use

the CWRU dataset. However, there are several datasets that

can be obtained from online databases. Table 7 lists these

datasets and the advantages and disadvantages of each. The

CWRUdataset can be used as a starting point to determine the

performance of the proposed model. Unlike other datasets,

the CWRU database consists of four operating conditions

with three fault severities. A DL model can be tested with

multi-fault conditions: up to 12 bearing conditions for each

operating condition. Mao et al. achieved satisfactory diag-

nosis performance and a clear separation between each fault

condition using feature visualisation [208]. Zhang et al. pro-
vided a comprehensive review of the performance of every
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TABLE 7. List of available online machinery datasets.

deep learning model tested on the CWRU dataset [209].

On the other hand, the data provided by machinery fault

database (MaFaulDa) is useful for the next analysis since

there is more than one types of sensor. The data is collected

from microphone and vibration sensors. Meanwhile, IMS

bearing datasets can be used for fault identification and RUL

analysis, since the data has been run for endurance test.

Unlike in other bearing datasets, the fault in IMS bearing

components is naturally grown during the run to test failure.

Saufi et al. used the CWRU, IMS and MaFaulDa datasets

to examine the performance of their proposed model [128].

The authors achieved more than 98% diagnosis accuracy

for all datasets. Guo et al. performed a transfer learning

process using CWRU as the source domain and IMS dataset

as the target domain [210]. The RUL analysis can also be

done using the IEEE PHM 2012 dataset, the experiment

for which was run using the PRONOSTIA platform. The

datasets from Paderborn University consist of three types of

bearing conditions—normal, outer race faults and inner race

faults—with artificial and realistic damage conditions. Using

Paderborn datasets, DL models can be tested with several

types of bearing damage from stator current signal that cannot

be obtained from other bearing datasets. Zhu et al. achieved
97.15% and 82.05% average accuracy using the CWRU and

Paderborn university datasets, respectively [211]. The authors

determined that the time-frequency analysis provides higher

diagnosis accuracy compared to frequency spectrum and time

domain segment data. However, Chen et al. achieved 94.5%

for Paderborn dataset using a deep inception net with an

atrous convolution neural network [115]. It should be noted

that theMaFaulDa and Paderborn datasets receive little atten-

tion in the development of DL models.

There are two datasets for gear fault conditions available

online: high-speed turbine and IEEE PHM data challenge.

The high-speed turbine dataset includes normal and fault con-

ditions of gear sets. The experiment that generated this dataset

was conducted using the actual gearbox of a wind turbine

system. Furthermore, the IEEE PHM 2009 datasets provide

more fault conditions in the gearbox system. The experimen-

tal setup and dataset details have been discussed in [101]

and [212]. The turbine blade dataset from UNSW contains

three types of conditions: normal blade, normal blade with an

air jet and blade fault. The turbine experimental rig contains

a 19-blade arrangement. Most of the gear and blade datasets
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are not extensively used for DL models which provide a good

opportunity for further development. Finally, all of the listed

data in Table 7 was collected at high rotation speeds; DL

models cannot be examined with low-speed conditions.

V. CONCLUSION

Fault detection and diagnosis (FDD) for rotating machinery

is important in order to increase operational time and pre-

vent unexpected breakdowns. With continued rapid advances

in computer technology, DL models will continue to be

powerful and attractive for use in FDD systems. However,

the performance of DL brings with it several challenges.

Therefore, in this paper, the challenges and development of

DL implementations in FDD systems for rotating machinery

have been reviewed.
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