Universiti Teknologi Malaysia Institutional Repository

Polysulfone mixed matrix hollow fiber membranes using zeolite templated carbon as a performance enhancement filler for gas separation

Wijiyanti, Rika and Ubaidillah, Afifah Nur and Gunawan, Triyanda and Abdul Karim, Zulhairun and Ismail, Ahmad Fauzi and Smart, Simon and Lin, Rijia and Widiastuti, Nurul (2019) Polysulfone mixed matrix hollow fiber membranes using zeolite templated carbon as a performance enhancement filler for gas separation. Chemical Engineering Research and Design, 150 . pp. 274-288. ISSN 0263-8762

Full text not available from this repository.

Official URL: http://dx.doi.org/10.1016/j.cherd.2019.08.004

Abstract

Zeolite-templated carbon (ZTC) was used as a new nanoporous filler to prepare mixed-matrix membranes (MMMs) with polysulfone as a continuous phase. The ZTC was prepared using a synthesized zeolite-Y template and sucrose carbon source via the impregnation method. The MMMs were fabricated through a dry-jet wet spinning technique, and the ZTC loadings were varied between 0.4–0.7 wt%. The results showed that the integration of the ZTC did not change the microscopic structure of membranes. Additionally, the addition of filler did not affect the amorphous character of the polymer, while the polymer chain spacing slightly decreased. The thermal stability of MMMs improved with an increase in the glass transition temperature. The MMM at 0.4 wt% loading exhibited the best separation performances as shown from the Robeson curve, with CH4, CO2, N2, O2, and H2 permeances of 5.9, 58.5, 5.0, 14.0, and 169.2 GPU, respectively. In addition, the improvements in CO2/CH4, O2/N2, H2/CH4, and CO2/N2 ideal selectivities were 290%, 117%, 272%, and 219%, respectively. On the other hand, the enhancement of the permeances and reduction in selectivities observed at 0.7 wt% loading indicated that the existence of voids was a main factor in the permeation behavior of the MMMs.

Item Type:Article
Uncontrolled Keywords:mixed-matrix membranes, polysulfone, zeolite-templated carbon
Subjects:T Technology > TP Chemical technology
Divisions:Chemical and Energy Engineering
ID Code:89399
Deposited By: Yanti Mohd Shah
Deposited On:22 Feb 2021 06:04
Last Modified:22 Feb 2021 06:04

Repository Staff Only: item control page